|   | 
Details
   web
Records
Author Gooley, J.J.; Chamberlain, K.; Smith, K.A.; Khalsa, S.B.S.; Rajaratnam, S.M.W.; Van Reen, E.; Zeitzer, J.M.; Czeisler, C.A.; Lockley, S.W.
Title Exposure to room light before bedtime suppresses melatonin onset and shortens melatonin duration in humans Type Journal Article
Year 2011 Publication The Journal of Clinical Endocrinology and Metabolism Abbreviated Journal J Clin Endocrinol Metab
Volume (down) 96 Issue 3 Pages E463-72
Keywords Adolescent; Adult; Female; Humans; *Light; *Lighting; Male; Melatonin/*blood; Sleep/physiology; Time Factors; Young Adult
Abstract CONTEXT: Millions of individuals habitually expose themselves to room light in the hours before bedtime, yet the effects of this behavior on melatonin signaling are not well recognized. OBJECTIVE: We tested the hypothesis that exposure to room light in the late evening suppresses the onset of melatonin synthesis and shortens the duration of melatonin production. DESIGN: In a retrospective analysis, we compared daily melatonin profiles in individuals living in room light (<200 lux) vs. dim light (<3 lux). PATIENTS: Healthy volunteers (n = 116, 18-30 yr) were recruited from the general population to participate in one of two studies. SETTING: Participants lived in a General Clinical Research Center for at least five consecutive days. INTERVENTION: Individuals were exposed to room light or dim light in the 8 h preceding bedtime. OUTCOME MEASURES: Melatonin duration, onset and offset, suppression, and phase angle of entrainment were determined. RESULTS: Compared with dim light, exposure to room light before bedtime suppressed melatonin, resulting in a later melatonin onset in 99.0% of individuals and shortening melatonin duration by about 90 min. Also, exposure to room light during the usual hours of sleep suppressed melatonin by greater than 50% in most (85%) trials. CONCLUSIONS: These findings indicate that room light exerts a profound suppressive effect on melatonin levels and shortens the body's internal representation of night duration. Hence, chronically exposing oneself to electrical lighting in the late evening disrupts melatonin signaling and could therefore potentially impact sleep, thermoregulation, blood pressure, and glucose homeostasis.
Address Division of Sleep Medicine, Brigham and Women's Hospital and Harvard Medical School, 221 Longwood Avenue, Boston, Massachusetts 02115, USA. gmsjjg@nus.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-972X ISBN Medium
Area Expedition Conference
Notes PMID:21193540; PMCID:PMC3047226 Approved no
Call Number IDA @ john @ Serial 139
Permanent link to this record
 

 
Author Chen, S.; Li, W.; Yang, S.; Zhang, B.; Li, T.; Du, Y.; Yang, M.; Zhao, H.
Title Evaluation method and reduction measures for the flicker effect in road lighting using fixed Low Mounting Height Luminaires Type Journal Article
Year 2019 Publication Tunnelling and Underground Space Technology Abbreviated Journal Tunnelling and Underground Space Technology
Volume (down) 93 Issue Pages 103101
Keywords Lighting; Vision
Abstract Low Mounting Height Luminaires (LMHL) are used in many cities on viaducts, cross-sea and cross-river bridges due to their unique advantages. However, the flicker effect is an important factor that needs to be considered in road lighting using fixed LMHL. At present, there are not many researchers in the field of international lighting. Previous types of road lighting design were based on the method of the tunnel lighting flicker effect. At the same time, the flicker effect is mainly based on the subjective feelings of people but is not quantified. In this paper, the Flicker Index (FI) is calculated by measuring the parameters of streetlamps to evaluation flicker effect. Secondly, the suggestion to offset the flicker effect in CIE 88-2004 “Guide for the Lighting of Road Tunnels and Underpasses” is to limit the speed of the vehicle and adjust the road light spacing to avoid the flicker sensitive area on human eyes, while ignoring the essential problem of how the flicker effect is generated through the energy level of the stimulating optical signal. Two factors affecting the strength of the flicker effect are proposed: energy ratio and duty cycle. The duty cycle, in time, refers to the proportion of the strong and weak flashing signals during the period; in space, it refers to the proportional relationship between the length of the luminaire and the distance between the lamps, which is related to the running speed of the vehicle. It is consistent with the CIE recommendations for flicker. Thirdly, the essence of the flicker effect is the problem of the energy level of the stimulus signal. This study investigated the reduction in the brightness of the light source, hence reducing the energy of the visual stimulation signal to the human eye in order to judge the degree of fatigue in human vision. The experimental results show that the degree of fatigue in human vision decreases when the brightness of the experimental light source decreases. Therefore, the key to changing the flicker effect of LMHL is to reduce the contrast between the surface brightness of the luminaire and the brightness of the spatial background.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0886-7798 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2663
Permanent link to this record
 

 
Author Falchi, F.; Cinzano, P.; Elvidge, C.D.; Keith, D.M.; Haim, A.
Title Limiting the impact of light pollution on human health, environment and stellar visibility Type Journal Article
Year 2011 Publication Journal of Environmental Management Abbreviated Journal J Environ Manage
Volume (down) 92 Issue 10 Pages 2714-2722
Keywords Animals; Animals, Wild; Conservation of Natural Resources; Environment; *Environmental Pollution; Eye; *Health; Humans; Lighting/*adverse effects/standards; Melatonin/*antagonists & inhibitors; Sodium; Vision, Ocular/*physiology; Visual Perception
Abstract Light pollution is one of the most rapidly increasing types of environmental degradation. Its levels have been growing exponentially over the natural nocturnal lighting levels provided by starlight and moonlight. To limit this pollution several effective practices have been defined: the use of shielding on lighting fixture to prevent direct upward light, particularly at low angles above the horizon; no over lighting, i.e. avoid using higher lighting levels than strictly needed for the task, constraining illumination to the area where it is needed and the time it will be used. Nevertheless, even after the best control of the light distribution is reached and when the proper quantity of light is used, some upward light emission remains, due to reflections from the lit surfaces and atmospheric scatter. The environmental impact of this “residual light pollution”, cannot be neglected and should be limited too. Here we propose a new way to limit the effects of this residual light pollution on wildlife, human health and stellar visibility. We performed analysis of the spectra of common types of lamps for external use, including the new LEDs. We evaluated their emissions relative to the spectral response functions of human eye photoreceptors, in the photopic, scotopic and the 'meltopic' melatonin suppressing bands. We found that the amount of pollution is strongly dependent on the spectral characteristics of the lamps, with the more environmentally friendly lamps being low pressure sodium, followed by high pressure sodium. Most polluting are the lamps with a strong blue emission, like Metal Halide and white LEDs. Migration from the now widely used sodium lamps to white lamps (MH and LEDs) would produce an increase of pollution in the scotopic and melatonin suppression bands of more than five times the present levels, supposing the same photopic installed flux. This increase will exacerbate known and possible unknown effects of light pollution on human health, environment and on visual perception of the Universe by humans. We present quantitative criteria to evaluate the lamps based on their spectral emissions and we suggest regulatory limits for future lighting.
Address Istituto di Scienza e Tecnologia dell'Inquinamento Luminoso, Via Roma 13, I-36106 Thiene, Italy. falchi@lightpollution.it
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0301-4797 ISBN Medium
Area Expedition Conference
Notes PMID:21745709 Approved no
Call Number IDA @ john @ Serial 131
Permanent link to this record
 

 
Author Franceschini, S.; Pansera, M.
Title Beyond unsustainable eco-innovation: The role of narratives in the evolution of the lighting sector Type Journal Article
Year 2015 Publication Technological Forecasting and Social Change Abbreviated Journal Technological Forecasting and Social Change
Volume (down) 92 Issue Pages 69-83
Keywords Lighting, Society
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0040-1625 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ christopher.kyba @ Serial 1186
Permanent link to this record
 

 
Author Brainard, G.C.; Coyle, W.; Ayers, M.; Kemp, J.; Warfield, B.; Maida, J.; Bowen, C.; Bernecker, C.; Lockley, S.W.; Hanifin, J.P.
Title Solid-state lighting for the International Space Station: Tests of visual performance and melatonin regulation Type Journal Article
Year 2013 Publication Acta Astronautica Abbreviated Journal Acta Astronautica
Volume (down) 92 Issue 1 Pages 21-28
Keywords Human Health; Lighting
Abstract The International Space Station (ISS) uses General Luminaire Assemblies (GLAs) that house fluorescent lamps for illuminating the astronauts' working and living environments. Solid-state light emitting diodes (LEDs) are attractive candidates for replacing the GLAs on the ISS. The advantages of LEDs over conventional fluorescent light sources include lower up-mass, power consumption and heat generation, as well as fewer toxic materials, greater resistance to damage and long lamp life. A prototype Solid-State Lighting Assembly (SSLA) was developed and successfully installed on the ISS. The broad aim of the ongoing work is to test light emitted by prototype SSLAs for supporting astronaut vision and assessing neuroendocrine, circadian, neurobehavioral and sleep effects. Three completed ground-based studies are presented here including experiments on visual performance, color discrimination, and acute plasma melatonin suppression in cohorts of healthy, human subjects under different SSLA light exposure conditions within a high-fidelity replica of the ISS Crew Quarters (CQ). All visual tests were done under indirect daylight at 201 lx, fluorescent room light at 531 lx and 4870 K SSLA light in the CQ at 1266 lx. Visual performance was assessed with numerical verification tests (NVT). NVT data show that there are no significant differences in score (F=0.73, p=0.48) or time (F=0.14, p=0.87) for subjects performing five contrast tests (10%–100%). Color discrimination was assessed with Farnsworth-Munsell 100 Hue tests (FM-100). The FM-100 data showed no significant differences (F=0.01, p=0.99) in color discrimination for indirect daylight, fluorescent room light and 4870 K SSLA light in the CQ. Plasma melatonin suppression data show that there are significant differences (F=29.61, p<0.0001) across the percent change scores of plasma melatonin for five corneal irradiances, ranging from 0 to 405 &#956;W/cm2 of 4870 K SSLA light in the CQ (0–1270 lx). Risk factors for the health and safety of astronauts include disturbed circadian rhythms and altered sleep–wake patterns. These studies will help determine if SSLA lighting can be used both to support astronaut vision and serve as an in-flight countermeasure for circadian desynchrony, sleep disruption and cognitive performance deficits on the ISS.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0094-5765 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1533
Permanent link to this record