|   | 
Details
   web
Record
Author Smith, S.D.P.; McIntyre, P.B.; Halpern, B.S.; Cooke, R.M.; Marino, A.L.; Boyer, G.L.; Buchsbaum, A.; Burton, J., G. Allen; Campbell, L.M.; Ciborowski, J.J.H.; Doran, P.J.; Infante, D.M.; Johnson, L.B.; Read, J.G.; Rose, J.B.; Rutherford, E.S.; Steinman, A.D.; Allan, J.D.
Title Rating impacts in a multi-stressor world: a quantitative assessment of 50 stressors affecting the Great Lakes Type Journal Article
Year 2013 Publication Ecological Applications Abbreviated Journal Ecological Applications
Volume Issue Pages 140915094202006
Keywords Great Lakes; limnology; light pollution; environment; stressor; ecology
Abstract Ecosystems often experience multiple environmental stressors simultaneously that differ widely in their pathways and strengths of impact. Differences in relative impact can guide restoration and management prioritization, but few studies have empirically assessed a comprehensive suite of stressors acting on a given ecosystem. To fill this gap in the Laurentian Great Lakes, where considerable restoration investments are currently underway, we used expert elicitation via a detailed online survey to develop ratings of the relative impacts of 50 potential stressors. Highlighting the multiplicity of stressors in this system, experts assessed all 50 stressors to have some impact on ecosystem condition, but ratings differed greatly among stressors. Individual stressors related to invasive and nuisance species (e.g., dreissenid mussels and ballast invasion risk) and climate change were assessed as having the greatest potential impacts. These results mark a shift away from the longstanding emphasis on nonpoint phosphorus and persistent bioaccumulative toxic substances in the Great Lakes. Differences in impact ratings among lakes and ecosystem zones were weak, and experts exhibited surprisingly high levels of agreement on the relative impacts of most stressors. Our results provide a basin-wide, quantitative summary of expert opinion on the present-day influence of all major Great Lakes stressors. The resulting ratings can facilitate prioritizing stressors to achieve management objectives in a given location, as well as providing a baseline for future stressor impact assessments in the Great Lakes and elsewhere.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-0761 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 372
Permanent link to this record