|
Records |
Links |
|
Author |
Bedrosian, T.A.; Fonken, L.K.; Walton, J.C.; Nelson, R.J. |

|
|
Title |
Chronic exposure to dim light at night suppresses immune responses in Siberian hamsters |
Type |
Journal Article |
|
Year |
2011 |
Publication |
Biology Letters |
Abbreviated Journal |
Biol Lett |
|
|
Volume |
7 |
Issue |
3 |
Pages |
468-471 |
|
|
Keywords |
Animals; Blood Bactericidal Activity/immunology; Circadian Rhythm; Cricetinae; Fever/immunology; Hypersensitivity, Delayed/immunology; *Immunity; Light/*adverse effects; Lipopolysaccharides; Locomotion; Phodopus/*immunology |
|
|
Abstract |
Species have been adapted to specific niches optimizing survival and reproduction; however, urbanization by humans has dramatically altered natural habitats. Artificial light at night (LAN), termed 'light pollution', is an often overlooked, yet increasing disruptor of habitats, which perturbs physiological processes that rely on precise light information. For example, LAN alters the timing of reproduction and activity in some species, which decreases the odds of successful breeding and increases the threat of predation for these individuals, leading to reduced fitness. LAN also suppresses immune function, an important proxy for survival. To investigate the impact of LAN in a species naive to light pollution in its native habitat, immune function was examined in Siberian hamsters derived from wild-caught stock. After four weeks exposure to dim LAN, immune responses to three different challenges were assessed: (i) delayed-type hypersensitivity (DTH), (ii) lipopolysaccharide-induced fever, and (iii) bactericide activity of blood. LAN suppressed DTH response and reduced bactericide activity of blood after lipopolysaccharide treatment, in addition to altering daily patterns of locomotor activity, suggesting that human encroachment on habitats via night-time lighting may inadvertently compromise immune function and ultimately fitness. |
|
|
Address |
Department of Neuroscience, The Ohio State University Medical Center, Columbus, OH 43210, USA. tracy.bedrosian@osumc.edu |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1744-9561 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:21270021; PMCID:PMC3097873 |
Approved |
no |
|
|
Call Number |
IDA @ john @ |
Serial |
90 |
|
Permanent link to this record |
|
|
|
|
Author |
Ikeno, T.; Weil, Z.M.; Nelson, R.J. |

|
|
Title |
Dim light at night disrupts the short-day response in Siberian hamsters |
Type |
Journal Article |
|
Year |
2014 |
Publication |
General and Comparative Endocrinology |
Abbreviated Journal |
Gen Comp Endocrinol |
|
|
Volume |
197 |
Issue |
|
Pages |
56-64 |
|
|
Keywords |
2,4-dinitro-1-flourobenzene; Dnfb; Dth; Eya3; Eyes absent 3; GnIH; GnRH; Immune function; Ld; Lps; Light pollution; Pt; Pelage; Per1; Period1; Photoperiodism; Rfrp; RFamide-related peptide; Scn; Sd; Seasonality; Tsh; TSH receptor; Tshr; dLAN; delayed-type hypersensitivity; dim light at night; gonadotropin-inhibiting hormone; gonadotropin-releasing hormone; lipopolysaccharide; long days; pars tuberalis; short days; suprachiasmatic nuclei; thyroid-stimulating hormone |
|
|
Abstract |
Photoperiodic regulation of physiology, morphology, and behavior is crucial for many animals to survive seasonally variable conditions unfavorable for reproduction and survival. The photoperiodic response in mammals is mediated by nocturnal secretion of melatonin under the control of a circadian clock. However, artificial light at night caused by recent urbanization may disrupt the circadian clock, as well as the photoperiodic response by blunting melatonin secretion. Here we examined the effect of dim light at night (dLAN) (5lux of light during the dark phase) on locomotor activity rhythms and short-day regulation of reproduction, body mass, pelage properties, and immune responses of male Siberian hamsters. Short-day animals reduced gonadal and body mass, decreased spermatid nuclei and sperm numbers, molted to a whiter pelage, and increased pelage density compared to long-day animals. However, animals that experienced short days with dLAN did not show these short-day responses. Moreover, short-day specific immune responses were altered in dLAN conditions. The nocturnal activity pattern was blunted in dLAN hamsters, consistent with the observation that dLAN changed expression of the circadian clock gene, Period1. In addition, we demonstrated that expression levels of genes implicated in the photoperiodic response, Mel-1a melatonin receptor, Eyes absent 3, thyroid stimulating hormone receptor, gonadotropin-releasing hormone, and gonadotropin-inhibitory hormone, were higher in dLAN animals than those in short-day animals. These results suggest that dLAN disturbs the circadian clock function and affects the molecular mechanisms of the photoperiodic response. |
|
|
Address |
Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA. Electronic address: randy.nelson@osumc.edu |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0016-6480 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:24362257 |
Approved |
no |
|
|
Call Number |
IDA @ john @ |
Serial |
82 |
|
Permanent link to this record |