|   | 
Details
   web
Records
Author Oesch-Bartlomowicz, B.; Weiss, C.; Dietrich, C.; Oesch, F.
Title Circadian rhythms and chemical carcinogenesis: Potential link. An overview Type Journal Article
Year 2009 Publication Mutation Research Abbreviated Journal Mutat Res
Volume (down) 680 Issue 1-2 Pages 83-86
Keywords Human Health; Animals; Carcinogens/*toxicity; Cell Cycle/physiology; Cell Cycle Proteins/physiology; Circadian Rhythm/*drug effects/physiology; DNA/drug effects; DNA Damage; DNA Repair; Homeostasis/physiology; Humans; Neoplasms/*etiology/physiopathology; Period Circadian Proteins/metabolism
Abstract Circadian rhythm is an integral and not replaceable part of the organism's homeostasis. Its signalling is multidimensional, overlooking global networks such as chromatin remodelling, cell cycle, DNA damage and repair as well as nuclear receptors function. Understanding its global networking will allow us to follow up not only organism dysfunction and pathology (including chemical carcinogenesis) but well-being in general having in mind that time is not always on our side.
Address ECNIS Unit, University of Mainz, D-55131 Mainz, Germany. oeschb@uni-mainz.de
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-5107 ISBN Medium
Area Expedition Conference
Notes PMID:19836463 Approved no
Call Number LoNNe @ kagoburian @ Serial 790
Permanent link to this record
 

 
Author Czeisler, C.A.
Title Perspective: casting light on sleep deficiency Type Journal Article
Year 2013 Publication Nature Abbreviated Journal Nature
Volume (down) 497 Issue 7450 Pages S13
Keywords Human Health; Circadian Rhythm/physiology/radiation effects; Electricity/adverse effects; Humans; Jet Lag Syndrome/etiology/physiopathology/therapy; Lighting/*adverse effects; Melatonin/metabolism/secretion; Phototherapy; Sleep Deprivation/epidemiology/*etiology/*physiopathology/therapy; Suprachiasmatic Nucleus/physiology/radiation effects
Abstract
Address Division of Sleep Medicine, Harvard Medical School, and Division of Sleep Medicine, Department of Medicine, Brigham and Women's Hospital, in Boston, Massachusetts, USA. charles_czeisler@hms.harvard.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes PMID:23698501 Approved no
Call Number LoNNe @ christopher.kyba @ Serial 499
Permanent link to this record
 

 
Author Eisenstein, M.
Title Chronobiology: stepping out of time Type Journal Article
Year 2013 Publication Nature Abbreviated Journal Nature
Volume (down) 497 Issue 7450 Pages S10-2
Keywords Human Health; Animals; Benzofurans/therapeutic use; CLOCK Proteins/genetics/metabolism; Circadian Rhythm/genetics/*physiology; Cyclopropanes/therapeutic use; Efficiency/physiology; Humans; Melatonin/agonists/metabolism; Obesity/metabolism; Sleep/genetics/*physiology; Suprachiasmatic Nucleus/metabolism
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes PMID:23698500 Approved no
Call Number LoNNe @ christopher.kyba @ Serial 500
Permanent link to this record
 

 
Author Owens, B.
Title Obesity: heavy sleepers Type Journal Article
Year 2013 Publication Nature Abbreviated Journal Nature
Volume (down) 497 Issue 7450 Pages S8-9
Keywords Human Health; Animals; Body Mass Index; CLOCK Proteins/genetics/metabolism; Circadian Rhythm/physiology; Energy Metabolism/*physiology; Ghrelin/metabolism; Humans; Insulin Resistance/physiology; Leptin/metabolism; Male; Mice; Obesity/*physiopathology; Satiety Response/physiology; Sleep/*physiology; Suprachiasmatic Nucleus/physiology; Time Factors; Weight Gain/physiology; Weight Loss/physiology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes PMID:23698508 Approved no
Call Number LoNNe @ christopher.kyba @ Serial 503
Permanent link to this record
 

 
Author LeGates, T.A.; Altimus, C.M.; Wang, H.; Lee, H.-K.; Yang, S.; Zhao, H.; Kirkwood, A.; Weber, E.T.; Hattar, S.
Title Aberrant light directly impairs mood and learning through melanopsin-expressing neurons Type Journal Article
Year 2012 Publication Nature Abbreviated Journal Nature
Volume (down) 491 Issue 7425 Pages 594-598
Keywords Affect/drug effects/physiology/*radiation effects; Animals; Antidepressive Agents/pharmacology; Body Temperature Regulation/physiology/radiation effects; Circadian Rhythm/physiology; Cognition/drug effects/physiology/radiation effects; Corticosterone/metabolism; Depression/etiology/physiopathology; Desipramine/pharmacology; Fluoxetine/pharmacology; Learning/drug effects/physiology/*radiation effects; *Light; Long-Term Potentiation/drug effects; Male; Memory/physiology/radiation effects; Mice; Photoperiod; Retinal Ganglion Cells/drug effects/*metabolism/*radiation effects; *Rod Opsins/analysis; Sleep/physiology; Wakefulness/physiology
Abstract The daily solar cycle allows organisms to synchronize their circadian rhythms and sleep-wake cycles to the correct temporal niche. Changes in day-length, shift-work, and transmeridian travel lead to mood alterations and cognitive function deficits. Sleep deprivation and circadian disruption underlie mood and cognitive disorders associated with irregular light schedules. Whether irregular light schedules directly affect mood and cognitive functions in the context of normal sleep and circadian rhythms remains unclear. Here we show, using an aberrant light cycle that neither changes the amount and architecture of sleep nor causes changes in the circadian timing system, that light directly regulates mood-related behaviours and cognitive functions in mice. Animals exposed to the aberrant light cycle maintain daily corticosterone rhythms, but the overall levels of corticosterone are increased. Despite normal circadian and sleep structures, these animals show increased depression-like behaviours and impaired hippocampal long-term potentiation and learning. Administration of the antidepressant drugs fluoxetine or desipramine restores learning in mice exposed to the aberrant light cycle, suggesting that the mood deficit precedes the learning impairments. To determine the retinal circuits underlying this impairment of mood and learning, we examined the behavioural consequences of this light cycle in animals that lack intrinsically photosensitive retinal ganglion cells. In these animals, the aberrant light cycle does not impair mood and learning, despite the presence of the conventional retinal ganglion cells and the ability of these animals to detect light for image formation. These findings demonstrate the ability of light to influence cognitive and mood functions directly through intrinsically photosensitive retinal ganglion cells.
Address Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes PMID:23151476; PMCID:PMC3549331 Approved no
Call Number IDA @ john @ Serial 238
Permanent link to this record