Records |
Author |
Barentine, J.C.; Walker, C.E.; Kocifaj, M.; Kundracik, F.; Juan, A.; Kanemoto, J.; Monrad, C.K. |
Title |
Skyglow Changes Over Tucson, Arizona, Resulting From A Municipal LED Street Lighting Conversion |
Type |
Journal Article |
Year |
2018 |
Publication |
Journal of Quantitative Spectroscopy and Radiative Transfer |
Abbreviated Journal |
Journal of Quantitative Spectroscopy and Radiative Transfer |
Volume |
212 |
Issue |
|
Pages |
10-23 |
Keywords |
Skyglow; Tucson; Arizona; LED; modeling; radiative transfer; LED |
Abstract |
The transition from earlier lighting technologies to white light-emitting diodes (LEDs) is a significant change in the use of artificial light at night. LEDs emit considerably more short-wavelength light into the environment than earlier technologies on a per-lumen basis. Radiative transfer models predict increased skyglow over cities transitioning to LED unless the total lumen output of new lighting systems is reduced. The City of Tucson, Arizona (U.S.), recently converted its municipal street lighting system from a mixture of fully shielded high- and low-pressure sodium (HPS/LPS) luminaires to fully shielded 3000 K white LED luminaires. The lighting design intended to minimize increases to skyglow in order to protect the sites of nearby astronomical observatories without compromising public safety. This involved the migration of over 445 million fully shielded HPS/LPS lumens to roughly 142 million fully shielded 3000 K white LED lumens and an expected concomitant reduction in the amount of visual skyglow over Tucson. SkyGlow Simulator models predict skyglow decreases on the order of 10-20% depending on whether fully shielded or partly shielded lights are in use. We tested this prediction using visual night sky brightness estimates and luminance-calibrated, panchromatic all-sky imagery at 15 locations in and near the city. Data were obtained in 2014, before the LED conversion began, and in mid-2017 after approximately 95% of ~18,000 luminaires was converted. Skyglow differed marginally, and in all cases with valid data changed by <±20%. Over the same period, the city’s upward-directed optical radiance detected from Earth orbit decreased by approximately 7%. While these results are not conclusive, they suggest that LED conversions paired with dimming can reduce skyglow over cities. |
Address  |
International Dark-Sky Association, 3223 N 1st Ave, Tucson, AZ, 85719 USA; john(at)darksky.org |
Corporate Author |
|
Thesis |
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
English |
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0022-4073 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
IDA @ john @ |
Serial |
1819 |
Permanent link to this record |
|
|
|
Author |
Kolláth, Z. |
Title |
Measuring and modelling light pollution at the Zselic Starry Sky Park |
Type |
Journal Article |
Year |
2010 |
Publication |
Journal of Physics: Conference Series |
Abbreviated Journal |
J. Phys.: Conf. Ser. |
Volume |
218 |
Issue |
|
Pages |
012001 |
Keywords |
Skyglow; modeling; measurement; SQM; sky brightness; Zselic; International Dark Sky Park; Hungry; measurements; modeling; light pollution; skyglow; radiative transfer |
Abstract |
One of the first 'International Dark-sky Parks' in Europe was established at the Zselic Landscape Protection Area in Hungary. A special monitoring program has been carrying on to survey the quality of the night sky using 'Sky Quality Meters' and DSLR cameras. The main conclusion of our measurements is that the local villages have only a minimal effect on the quality of the sky. There are light-domes due to the neighbouring cities only close to the horizon, the main source of obtrusive light is the city of Kaposvár. The anthropogenic component of zenith luminance of the night sky is obtained as the function of the distance from the city centre of Kaposvár. Our data were modelled by radiation transfer calculations. These results can help to draw attention to the energy emitted useless to the space and to protect our nocturnal landscape of nature parks for the next generations. |
Address  |
Konkoly Observatory, Konkoly Thege u. 15-17, H-1121 Budapest, Hungary; kollath(at)konkoly.hu |
Corporate Author |
|
Thesis |
|
Publisher |
IOP |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
English |
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1742-6596 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
IDA @ john @ |
Serial |
1436 |
Permanent link to this record |
|
|
|
Author |
Bierman, A. |
Title |
Will switching to LED outdoor lighting increase sky glow? |
Type |
Journal Article |
Year |
2012 |
Publication |
Lighting Research and Technology |
Abbreviated Journal |
Lighting Research and Technology |
Volume |
44 |
Issue |
4 |
Pages |
449-458 |
Keywords |
LED; light emitting diode; skyglow; light pollution; modeling; Radiative transfer |
Abstract |
As LED sources are increasingly being used for outdoor lighting, concerns are being raised about their impact on man-made sky glow. This paper compares the amount of light scattered back to Earth from a 6500 K phosphor-converted white LED light source to that from a 2050 K high pressure sodium (HPS) light source. Calculations based solely on molecular Rayleigh scattering provide an upper limit of 22% more scatter from the LED source, but are not realistic because the atmosphere has significant scatter from aerosol content. Adding in the effects of aerosols in the atmosphere, as derived from aerosol optical depth measurements and Mie scattering distributions, reduces the wavelength dependency of scattered light to where the LED source has roughly 10–20% more scattered light contributing to sky glow. Scattering ratios (LED:HPS) are calculated for different angles and atmospheric conditions. |
Address  |
Lighting Research Center, 21 Union Street, Troy, NY 12180-3352, USA; bierma2(at)rpi.edu |
Corporate Author |
|
Thesis |
|
Publisher |
SAGE |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
English |
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1477-1535 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
Luginbuhl, Boley, and Davis (2013) dispute Bierman's thesis. |
Approved |
no |
Call Number |
IDA @ john @ |
Serial |
269 |
Permanent link to this record |
|
|
|
Author |
Rea, M. S.; Bierman, A. |
Title |
Spectral considerations for outdoor lighting: Consequences for sky glow |
Type |
Journal Article |
Year |
2014 |
Publication |
Lighting Research and Technology |
Abbreviated Journal |
Lighting Res. & Tech. |
Volume |
47 |
Issue |
8 |
Pages |
920-930 |
Keywords |
Lighting; skyglow; spectrum; scattering; aerosol; modeling |
Abstract |
It is well known that the magnitude of sky glow on a clear night depends upon the aerosol content in the atmosphere and the spectral power distribution (amount and spectrum). Sources with a greater proportion of short-wavelength radiation produce more backscattered radiation, but as aerosol density increases, the differential effect of spectrum becomes smaller. Sky glow magnitude also depends upon the operating characteristics of the detector and will be greater when the spectrum of the backscattered radiation is tuned to the spectral band-pass characteristics of the detector. The human visual system is most often used to assess sky glow magnitude, but its spectral response is not limited to a single, univariate detector. Rather, the retina is composed of many neural channels, each with its own spectral and absolute sensitivities to optical radiation. Since we can use a different neural channel to see an individual star than we do to gain an overall impression of sky brightness, changes to the spectral power distribution of backscattered radiation differentially, and simultaneously, affect oneâs ability to see a single star and to assess sky brightness. A general method for assessing sky glow based upon aerosol content, spectral power distribution and the specific operating characteristics of a detector, human or otherwise, is offered. |
Address  |
Lighting Research Center, Rensselaer Polytechnic Institute, Troy, New York, USA |
Corporate Author |
|
Thesis |
|
Publisher |
The Society of Light and Lighting |
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
IDA @ john @ |
Serial |
1065 |
Permanent link to this record |
|
|
|
Author |
Rabaza, O.; Aznar-Dols, F.; Mercado-Vargas, M.; Espin-Estrella, A. |
Title |
A new method of measuring and monitoring light pollution in the night sky |
Type |
Journal Article |
Year |
2014 |
Publication |
Lighting Research and Technology |
Abbreviated Journal |
Lighting Research and Technology |
Volume |
46 |
Issue |
1 |
Pages |
5-19 |
Keywords |
Instrumentation; all-sky; measurement; modeling; monitoring |
Abstract |
This paper describes a method of measuring and monitoring light pollution in the night sky. This method is capable of instantly quantifying the levels of artificial radiance and monochromatic luminance of the sky glow by means of a system that includes an all-sky camera as well as several interference filters. The calibration is done with an integrating sphere where the measurement pattern used is obtained from the light reflected from the inner wall of the sphere which comes from radiation emitted by a calibration lamp with a known luminous flux. The inner wall of this sphere is a Lambertian surface, which ensures that the light reflected or falling on it is uniformly dispersed in all directions (i.e. the surface luminance is isotropic). |
Address  |
Ovidio Rabaza Castillo, E.T.S. de Ingenieros de Caminos, Canales y Puertos, Departamento de Ingenieria Civil, Campus de Fuentenueva, Universidad de Granada, 18071, Granada, Spain E-mail: ovidio(at)ugr.es |
Corporate Author |
|
Thesis |
|
Publisher |
SAGE |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
English |
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1477-1535 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
IDA @ john @ |
Serial |
1347 |
Permanent link to this record |