toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kocifaj, M. url  doi
openurl 
  Title Modelling the spectral behaviour of night skylight close to artificial light sources Type Journal Article
  Year 2010 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal MNRAS  
  Volume 403 Issue 4 Pages 2105-2110  
  Keywords scattering; atmospheric effects; light pollution; methods: numerical; Modeling  
  Abstract Spectral features of the night sky are simulated under cloudless conditions. Numerical runs show that spectral composition of the diffuse light changes over the whole sky and sky radiances quickly respond to altering aerosol characteristics, such as the asymmetry parameter, single scattering albedo and total optical thickness. The general trend is a steep decrease of diffuse irradiance with a distance from the city centre. Powerstar HQI-NDL lamps produce more light at short wavelengths, thus implying the higher levels of light pollution. The red light may markedly contribute to the obtrusive light if Vialox NAV-4Y lamps are considered as a prevailing source of light in the model town. In a non-turbid atmosphere, the minimum radiance is notoriously observed close to the zenith. As aerosol loading increases, the minimum radiance is shifted to larger zenith angles at the opposite side of the light source. Obtained results may serve as corrections to spectrophotometry data, as the light pollution can be easily calculated for any sky element and for any spectral band.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 276  
Permanent link to this record
 

 
Author Xavier Kerola, D. url  doi
openurl 
  Title Modelling artificial night-sky brightness with a polarized multiple scattering radiative transfer computer code: Modelling artificial night-sky brightness Type Journal Article
  Year 2006 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal  
  Volume 365 Issue 4 Pages 1295-1299  
  Keywords Skyglow; modeling; radiative transfer; Gauss-Seidel; light pollution; Garstang model  
  Abstract As part of an ongoing investigation of radiative effects produced by hazy atmospheres, computational procedures have been developed for use in determining the brightening of the night sky as a result of urban illumination. The downwardly and upwardly directed radiances of multiply scattered light from an offending metropolitan source are computed by a straightforward Gauss-Seidel (G-S) iterative technique applied directly to the integrated form of Chandrasekhar's vectorized radiative transfer equation. Initial benchmark night-sky brightness tests of the present G-S model using fully consistent optical emission and extinction input parameters yield very encouraging results when compared with the double scattering treatment of Garstang, the only full-fledged previously available model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 278  
Permanent link to this record
 

 
Author Kocifaj, M.; Solano Lamphar, H.A. url  doi
openurl 
  Title Skyglow: a retrieval of the approximate radiant intensity function of ground-based light sources Type Journal Article
  Year 2014 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Monthly Notices of the Royal Astronomical Society  
  Volume 439 Issue 4 Pages 3405-3413  
  Keywords radiative transfer; atmospheric effects; light pollution; methods: observational; site testing; skyglow; modeling  
  Abstract The angular distribution of the light emitted from a city is an important source of information about public lighting systems and it also plays a key role in modelling the skyglow. Usually, the upwardly directed radiation is characterized through a parametrized emission function – a semi-empirical approach as a reasonable approximation that allows for fast computations. However, theoretical or experimental retrievals of emission characteristics are extremely difficult to obtain because of both the complexity of radiative transfer methods and/or the lack of highly specialized measuring devices.

Our research has been conducted with the specific objective to identify an efficient theoretical technique for retrieval of the emission pattern of ground-based light sources in order to determine the optimum values of the scaling parameters of the Garstang function. In particular, the input data involve the zenith luminance or radiance with horizontal illuminance or irradiance. Theoretical ratios of zenith luminance LV(0) to horizontal illuminance DV are calculated for a set of distances d that separate a hypothetical observer from the light source (a city or town). This approach is advantageous because inexpensive traditional equipment can be used to obtain the mean values of the Garstang parameters. Furthermore, it can also be applied to other parametrizable emission functions and to any measuring site, even one with a masked horizon.
 
  Address Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina, 842 48 Bratislava, Slovak Republic  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 326  
Permanent link to this record
 

 
Author Crumey, A. url  doi
openurl 
  Title Human Contrast Threshold and Astronomical Visibility. Type Journal Article
  Year 2014 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal MNRAS  
  Volume 422 Issue 3 Pages 2600-2619  
  Keywords Vision; visibility; skyglow; sky brightness; modeling  
  Abstract The standard visibility model in light-pollution studies is the formula of Hecht, as used e.g. by Schaefer. However, it is applicable only to point sources and is shown to be of limited accuracy. A new visibility model is presented for uniform achromatic targets of any size against background luminances ranging from zero to full daylight, produced by a systematic procedure applicable to any appropriate data set (e.g. Blackwell's), and based on a simple but previously unrecognized empirical relation between contrast threshold and adaptation luminance. The scotopic luminance correction for variable spectral radiance (colour index) is calculated. For point sources, the model is more accurate than Hecht's formula and is verified using telescopic data collected at Mount Wilson in 1947, enabling the sky brightness at that time to be determined. The result is darker than the calculation by Garstang, implying that light pollution grew more rapidly in subsequent decades than has been supposed. The model is applied to the nebular observations of William Herschel, enabling his visual performance to be quantified. Proposals are made regarding sky quality indicators for public use.  
  Address Department of Humanities, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; andrew.crumey(at)northumbria.ac.uk  
  Corporate Author Thesis  
  Publisher Oxford Journals Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 536  
Permanent link to this record
 

 
Author Zeng, C.; Zhou, Y.; Wang, S.; Yan, F.; Zhao, Q. url  doi
openurl 
  Title Population spatialization in China based on night-time imagery and land use data Type Journal Article
  Year 2011 Publication International Journal of Remote Sensing Abbreviated Journal International Journal of Remote Sensing  
  Volume 32 Issue 24 Pages 9599-9620  
  Keywords DMSP-OLS; remote sensing; light at night; population; modeling  
  Abstract Population is a key indicator of socioeconomic development, urban planning and environmental protection, particularly for developing countries like China. But, census data for any given area are neither always available nor adequately reflect the internal differences of population. The authors tried to overcome this problem by spatializing the population across China through utilizing integer night-time imagery (Defense Meteorological Satellite Program/Operational Linescan System, DMSP/OLS) and land-use data. In creating the population linear regression model, night-time light intensity and lit areas, under different types of land use, were employed as predictor variables, and census data as dependent variables. To improve model performance, eight zones were created using night-time imagery clustering and shortest path algorithm. The population model is observed to have a coefficient of determination (R 2) ranging from 0.80 to 0.95 in the research area, which remained the same in different years. A comparison of the results of this study with those of other researchers shows that the spatialized population density map, prepared on the basis of night-time imagery, reflects the population distribution character more explicitly and in greater detail.  
  Address State Key Laboratory of Remote Sensing Science , Jointly Sponsored by the Institute of Remote Sensing Applications of the Chinese Academy of Sciences and Beijing Normal University , Beijing, 100101, PR China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0143-1161 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 228  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: