toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Nievas Rosillo, M. pdf  url
openurl 
  Title Absolute photometry and Night Sky Brightness with all-sky cameras Type Report
  Year 2013 Publication e-prints Complutense Abbreviated Journal e-prints Complutense  
  Volume Issue 24626 Pages  
  Keywords Instrumentation; skyglow; measurement; modeling  
  Abstract All-sky cameras have proven to be powerful tools to continuously monitoring the sky in a wide range of fields in both Astrophysics and Meteorology. In this work, we have developed a complete software pipeline to analyze the night CCD images obtained with one of such systems. This let us to study typical parameters used in Astrophysics to characterize the night sky quality, such as the Sky Brightness, the Cloud Coverage and the Atmospheric Extinction, how they evolve over the time and their variability. Using our software, we analyzed a large set of data from AstMon-OT all-sky camera at Teide Observatory. Results from this work have been applied in the support to the spanish CTA site proposal at Izaña, Tenerife and are being discussed within the CTA consortium. A comparison with data from other devices that have been used in site characterization such as the IAC80 telescope is also presented. This comparison is used to validate the results of the analysis of all-sky images. Finally, we test our software with AstMon-UCM and DSLR cameras. Some general recommendations for the use of DSLR cameras are provided.  
  Address Departamento de Astrofí­sica y Ciencias de la Atmosfera, Universidad Complutense de Madrid, Madrid, Spain  
  Corporate Author Thesis Master's thesis  
  Publisher Place of Publication Madrid Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title e-prints Complutense Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) Approved no  
  Call Number IDA @ john @ Serial 1437  
Permanent link to this record
 

 
Author Zeng, C.; Zhou, Y.; Wang, S.; Yan, F.; Zhao, Q. url  doi
openurl 
  Title Population spatialization in China based on night-time imagery and land use data Type Journal Article
  Year 2011 Publication International Journal of Remote Sensing Abbreviated Journal International Journal of Remote Sensing  
  Volume 32 Issue 24 Pages 9599-9620  
  Keywords DMSP-OLS; remote sensing; light at night; population; modeling  
  Abstract Population is a key indicator of socioeconomic development, urban planning and environmental protection, particularly for developing countries like China. But, census data for any given area are neither always available nor adequately reflect the internal differences of population. The authors tried to overcome this problem by spatializing the population across China through utilizing integer night-time imagery (Defense Meteorological Satellite Program/Operational Linescan System, DMSP/OLS) and land-use data. In creating the population linear regression model, night-time light intensity and lit areas, under different types of land use, were employed as predictor variables, and census data as dependent variables. To improve model performance, eight zones were created using night-time imagery clustering and shortest path algorithm. The population model is observed to have a coefficient of determination (R 2) ranging from 0.80 to 0.95 in the research area, which remained the same in different years. A comparison of the results of this study with those of other researchers shows that the spatialized population density map, prepared on the basis of night-time imagery, reflects the population distribution character more explicitly and in greater detail.  
  Address State Key Laboratory of Remote Sensing Science , Jointly Sponsored by the Institute of Remote Sensing Applications of the Chinese Academy of Sciences and Beijing Normal University , Beijing, 100101, PR China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0143-1161 ISBN Medium  
  Area Expedition Conference  
  Notes (down) Approved no  
  Call Number IDA @ john @ Serial 228  
Permanent link to this record
 

 
Author Kocifaj, M. url  doi
openurl 
  Title A numerical experiment on light pollution from distant sources: Light pollution from distant sources Type Journal Article
  Year 2011 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal MNRAS  
  Volume 415 Issue 4 Pages 3609-3615  
  Keywords scattering; atmospheric effects; light pollution; methods: numerical; skyglow; modeling  
  Abstract To predict the light pollution of the night-time sky realistically over any location or measuring point on the ground presents quite a difficult calculation task. Light pollution of the local atmosphere is caused by stray light, light loss or reflection of artificially illuminated ground objects or surfaces such as streets, advertisement boards or building interiors. Thus it depends on the size, shape, spatial distribution, radiative pattern and spectral characteristics of many neighbouring light sources. The actual state of the atmospheric environment and the orography of the surrounding terrain are also relevant. All of these factors together influence the spectral sky radiance/luminance in a complex manner. Knowledge of the directional behaviour of light pollution is especially important for the correct interpretation of astronomical observations. From a mathematical point of view, the light noise or veil luminance of a specific sky element is given by a superposition of scattered light beams. Theoretical models that simulate light pollution typically take into account all ground-based light sources, thus imposing great requirements on CPU and MEM. As shown in this paper, a contribution of distant sources to the light pollution might be essential under specific conditions of low turbidity and/or Garstang-like radiative patterns. To evaluate the convergence of the theoretical model, numerical experiments are made for different light sources, spectral bands and atmospheric conditions. It is shown that in the worst case the integration limit is approximately 100 km, but it can be significantly shortened for light sources with cosine-like radiative patterns.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes (down) Approved no  
  Call Number IDA @ john @ Serial 267  
Permanent link to this record
 

 
Author Cinzano, P.; Falchi, F. url  doi
openurl 
  Title The propagation of light pollution in the atmosphere Type Journal Article
  Year 2012 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Monthly Notices of the Royal Astronomical Society  
  Volume 427 Issue 4 Pages 3337-3357  
  Keywords radiative transfer; scattering; atmospheric effects; light pollution; site testing; light at night; Garstang model; LPTRAN; DMSP-OLS; GTOPO30; modeling; propagation  
  Abstract Recent methods to map artificial night-sky brightness and stellar visibility across large territories or their distribution over the entire sky at any site are based on computation of the propagation of light pollution with Garstang models, a simplified solution of the radiative transfer problem in the atmosphere that allows fast computation by reducing it to a ray-tracing approach. They are accurate for a clear atmosphere, when a two-scattering approximation is acceptable, which is the most common situation. We present here up-to-date extended Garstang models (EGM), which provide a more general numerical solution for the radiative transfer problem applied to the propagation of light pollution in the atmosphere. We also present the LPTRAN software package, an application of EGM to high-resolution Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) satellite measurements of artificial light emission and to GTOPO30 (Global 30 Arcsecond) digital elevation data, which provides an up-to-date method to predict the artificial brightness distribution of the night sky at any site in the world at any visible wavelength for a broad range of atmospheric situations and the artificial radiation density in the atmosphere across the territory. EGM account for (i) multiple scattering, (ii) wavelengths from 250 nm to infrared, (iii) the Earth's curvature and its screening effects, (iv) site and source elevation, (v) many kinds of atmosphere with the possibility of custom set-up (e.g. including thermal inversion layers), (vi) a mix of different boundary-layer aerosols and tropospheric aerosols, with the possibility of custom set-up, (vii) up to five aerosol layers in the upper atmosphere, including fresh and aged volcanic dust and meteoric dust, (viii) variations of the scattering phase function with elevation, (ix) continuum and line gas absorption from many species, ozone included, (x) up to five cloud layers, (xi) wavelength-dependent bidirectional reflectance of the ground surface from National Aeronautics and Space Administration (NASA) Moderate-Resolution Imaging Spectroradiometer (MODIS) satellite data, main models or custom data (snow included) and (xii) geographically variable upward light-emission function given as a three-parameter function or a Legendre polynomial series. Atmospheric scattering properties or light-pollution propagation functions from other sources can also be applied. A more general solution allows us to account also for (xiii) mountain screening, (xiv) geographical gradients of atmospheric conditions, including localized clouds and (xv) geographic distribution of ground surfaces, but suffers from too heavy computational requirements. Comparisons between predictions of classic Garstang models and EGM show close agreement for a US62 standard clear atmosphere and typical upward emission function.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes (down) Approved no  
  Call Number IDA @ john @ Serial 271  
Permanent link to this record
 

 
Author Kocifaj, M. url  doi
openurl 
  Title Two-stream approximation for rapid modeling the light pollution levels in local atmosphere Type Journal Article
  Year 2012 Publication Astrophysics and Space Science Abbreviated Journal Astrophys Space Sci  
  Volume 341 Issue 2 Pages 301-307  
  Keywords Light pollution; Atmospheric effects; Methods: numerical; Radiative transfer; Scattering; modeling; two-stream approximation  
  Abstract The two-stream concept is used for modeling the radiative transfer in Earth's atmosphere illuminated by ground-based light sources. The light pollution levels (illuminance and irradiance) are computed for various aerosol microphysical parameters, specifically the asymmetry parameter g A , single scattering albedo ω A , and optical thickness τ A . Two distinct size distributions of Junge's and gamma-type are employed. Rather then being a monotonic function of τ A , the diffuse illuminance/irradiance shows a local minimum at specific τ A, lim independent of size distribution taken into consideration. The existence of local minima has relation to the scattering and attenuation efficiencies both of which have opposite effects. The computational scheme introduced in this paper is advantageous especially if the entire set of calculations needs to be repeated with an aim to simulate diffuse light in various situations and when altering optical states of the atmospheric environment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-640X ISBN Medium  
  Area Expedition Conference  
  Notes (down) Approved no  
  Call Number IDA @ john @ Serial 273  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: