toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bierman, A. url  doi
openurl 
  Title Will switching to LED outdoor lighting increase sky glow? Type Journal Article
  Year 2012 Publication Lighting Research and Technology Abbreviated Journal Lighting Research and Technology  
  Volume 44 Issue 4 Pages 449-458  
  Keywords LED; light emitting diode; skyglow; light pollution; modeling; Radiative transfer  
  Abstract As LED sources are increasingly being used for outdoor lighting, concerns are being raised about their impact on man-made sky glow. This paper compares the amount of light scattered back to Earth from a 6500 K phosphor-converted white LED light source to that from a 2050 K high pressure sodium (HPS) light source. Calculations based solely on molecular Rayleigh scattering provide an upper limit of 22% more scatter from the LED source, but are not realistic because the atmosphere has significant scatter from aerosol content. Adding in the effects of aerosols in the atmosphere, as derived from aerosol optical depth measurements and Mie scattering distributions, reduces the wavelength dependency of scattered light to where the LED source has roughly 10–20% more scattered light contributing to sky glow. Scattering ratios (LED:HPS) are calculated for different angles and atmospheric conditions.  
  Address Lighting Research Center, 21 Union Street, Troy, NY 12180-3352, USA; bierma2(at)rpi.edu  
  Corporate Author Thesis  
  Publisher SAGE Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-1535 ISBN Medium  
  Area Expedition Conference  
  Notes (up) Luginbuhl, Boley, and Davis (2013) dispute Bierman's thesis. Approved no  
  Call Number IDA @ john @ Serial 269  
Permanent link to this record
 

 
Author Bará, S.; Nievas, M.; Sanchez de Miguel, A.; Zamorano, J. url  openurl
  Title Zernike analysis of all-sky night brightness maps Type Journal Article
  Year 2014 Publication Applied Optics Abbreviated Journal Appl Opt  
  Volume 53 Issue 12 Pages 2677-2686  
  Keywords modeling; light at night; light pollution; all-sky; Zernike polynomials; image decomposition; sky brightness  
  Abstract All-sky night brightness maps (calibrated images of the night sky with hemispherical field-of-view (FOV) taken at standard photometric bands) provide useful data to assess the light pollution levels at any ground site. We show that these maps can be efficiently described and analyzed using Zernike circle polynomials. The relevant image information can be compressed into a low-dimensional coefficients vector, giving an analytical expression for the sky brightness and alleviating the effects of noise. Moreover, the Zernike expansions allow us to quantify in a straightforward way the average and zenithal sky brightness and its variation across the FOV, providing a convenient framework to study the time course of these magnitudes. We apply this framework to analyze the results of a one-year campaign of night sky brightness measurements made at the UCM observatory in Madrid.  
  Address Área de Óptica, Dept. de Física Aplicada, Fac. de Física, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain  
  Corporate Author Thesis  
  Publisher Optical Society of America Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6935 ISBN Medium  
  Area Expedition Conference  
  Notes (up) PMID:24787595 Approved no  
  Call Number IDA @ john @ Serial 318  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: