|   | 
Details
   web
Records
Author Xavier Kerola, D.
Title Modelling artificial night-sky brightness with a polarized multiple scattering radiative transfer computer code: Modelling artificial night-sky brightness Type Journal Article
Year 2006 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal
Volume 365 Issue 4 Pages 1295-1299
Keywords Skyglow; modeling; radiative transfer; Gauss-Seidel; light pollution; Garstang model
Abstract As part of an ongoing investigation of radiative effects produced by hazy atmospheres, computational procedures have been developed for use in determining the brightening of the night sky as a result of urban illumination. The downwardly and upwardly directed radiances of multiply scattered light from an offending metropolitan source are computed by a straightforward Gauss-Seidel (G-S) iterative technique applied directly to the integrated form of Chandrasekhar's vectorized radiative transfer equation. Initial benchmark night-sky brightness tests of the present G-S model using fully consistent optical emission and extinction input parameters yield very encouraging results when compared with the double scattering treatment of Garstang, the only full-fledged previously available model.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 278
Permanent link to this record
 

 
Author Kocifaj, M.; Solano Lamphar, H.A.
Title Skyglow: a retrieval of the approximate radiant intensity function of ground-based light sources Type Journal Article
Year 2014 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Monthly Notices of the Royal Astronomical Society
Volume 439 Issue 4 Pages 3405-3413
Keywords radiative transfer; atmospheric effects; light pollution; methods: observational; site testing; skyglow; modeling
Abstract The angular distribution of the light emitted from a city is an important source of information about public lighting systems and it also plays a key role in modelling the skyglow. Usually, the upwardly directed radiation is characterized through a parametrized emission function – a semi-empirical approach as a reasonable approximation that allows for fast computations. However, theoretical or experimental retrievals of emission characteristics are extremely difficult to obtain because of both the complexity of radiative transfer methods and/or the lack of highly specialized measuring devices.

Our research has been conducted with the specific objective to identify an efficient theoretical technique for retrieval of the emission pattern of ground-based light sources in order to determine the optimum values of the scaling parameters of the Garstang function. In particular, the input data involve the zenith luminance or radiance with horizontal illuminance or irradiance. Theoretical ratios of zenith luminance LV(0) to horizontal illuminance DV are calculated for a set of distances d that separate a hypothetical observer from the light source (a city or town). This approach is advantageous because inexpensive traditional equipment can be used to obtain the mean values of the Garstang parameters. Furthermore, it can also be applied to other parametrizable emission functions and to any measuring site, even one with a masked horizon.
Address Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina, 842 48 Bratislava, Slovak Republic
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 326
Permanent link to this record
 

 
Author Troy, J.R.; Holmes, N.D.; Veech, J.A.; Green, M.C.
Title Using observed seabird fallout records to infer patterns of attraction to artificial light Type Journal Article
Year 2013 Publication Endangered Species Research Abbreviated Journal
Volume 22 Issue 3 Pages 225-234
Keywords Animals; Anthropogenic light; GIS-based modeling; Hawaii; Kauai; Light attraction; Procellariiformes; Newell’s shearwater; Seabird conservation
Abstract Attraction of fledgling shearwaters, petrels, and storm-petrels to artificial light has been documented for decades on islands around the world and is considered a significant threat to many species. Although large numbers of downed birds have been observed after being disoriented by light, several important elements of this ‘fallout’ phenomenon are unknown, including the locations along the path from nest to ocean at which attraction and/or disorientation occurs and whether fledglings can be attracted back to land after reaching the ocean in numbers large enough to contribute significantly to fallout. To investigate these questions, we compared observed Newell’s shearwater Puffinus newelli fallout records (from 1998 to 2009) on Kauai, USA, with expected numbers generated from several hypothetical models containing basic assumptions related to fledgling movement and attraction to light. Based on our results, the spatial pattern of observed fallout is consistent with the amount of light that fledglings may view along their first flights to and beyond the coastline. This suggests that even fledglings from dark regions of the island may not be safe because they may view light after reaching the ocean and still be susceptible to attraction. These findings support recent modeling efforts predicting that most birds fledging from Kauai are likely exposed to at least some anthropogenic light. As nocturnal use of light by humans is unlikely to be eliminated, research on the types of artificial light that are both useful to humans and safe for seabirds may be crucial for the conservation of these important marine animals.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ christopher.kyba @ Serial 383
Permanent link to this record
 

 
Author Boscarino, B.T.; Rudstam, L.G.; Eillenberger, J.L.; O'Gorman, R.
Title Importance of light, temperature, zooplankton and fish in predicting the nighttime vertical distribution of Mysis diluviana Type Journal Article
Year 2009 Publication Aquat Biol Abbreviated Journal
Volume 5 Issue Pages 263-279
Keywords Animals; Mysis relicta; Modeling; Migration; Zooplankton; Vertical distribution; DVM
Abstract The opossum shrimp Mysis diluviana (formerly M. relicta) performs large amplitude diel vertical migrations in Lake Ontario and its nighttime distribution is influenced by temperature, light and the distribution of its predators and prey. At one location in southeastern Lake Ontario, we measured the vertical distribution of mysids, mysid predators (i.e. planktivorous fishes) and mysid prey (i.e. zooplankton), in addition to light and temperature, on 8 occasions from May to September, 2004 and 2005. We use these data to test 3 different predictive models of mysid habitat selection, based on: (1) laboratory-derived responses of mysids to different light and temperature gradients in the absence of predator or prey cues; (2) growth rate of mysids, as estimated with a mysid bioenergetics model, given known prey densities and temperatures at different depths in the water column; (3) ratio of growth rates (g) and mortality risk (μ) associated with the distribution of predatory fishes. The model based on light and temperature preferences was a better predictor of mysid vertical distribution than the models based on growth rate and g:μ on all 8 occasions. Although mysid temperature and light preferences probably evolved as mechanisms to reduce predation while increasing foraging intake, the response to temperature and light alone predicts mysid vertical distribution across seasons in Lake Ontario.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ christopher.kyba @ Serial 402
Permanent link to this record
 

 
Author Zamorano, J.; Sánchez de Miguel, A.; Ocaña, F.; Pila-Diez, B.; Gómez Castaño, J.; Pascual, S.; Tapia, C.; Gallego, J.; Fernandez, A.; Nievas, M.
Title Testing sky brightness models against radial dependency: a dense two dimensional survey around the city of Madrid, Spain Type Journal Article
Year 2016 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal JQSRT
Volume 181 Issue Pages 52-66
Keywords Skyglow; measurements; light pollution; artificial light at night; modeling; Madrid; Spain
Abstract We present a study of the night sky brightness around the extended metropolitan area of Madrid using Sky Quality Meter (SQM) photometers. The map is the first to cover the spatial distribution of the sky brightness in the center of the Iberian peninsula. These surveys are neccessary to test the light pollution models that predict night sky brightness as a function of the location and brightness of the sources of light pollution and the scattering of light in the atmosphere. We describe the data-retrieval methodology, which includes an automated procedure to measure from a moving vehicle in order to speed up the data collection, providing a denser and wider survey than previous works with similar time frames. We compare the night sky brightness map to the nocturnal radiance measured from space by the DMSP satellite. We find that i) a single source model is not enough to explain the radial evolution of the night sky brightness, despite the predominance of Madrid in size and population, and ii) that the orography of the region should be taken into account when deriving geo-specific models from general first-principles models. We show the tight relationship between these two luminance measures. This finding sets up an alternative roadmap to extended studies over the globe that will not require the local deployment of photometers or trained personnel.
Address Dept. Astrof´ısica y CC. de la Atm´osfera, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1323
Permanent link to this record