toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Troy, J.R.; Holmes, N.D.; Veech, J.A.; Green, M.C. url  doi
openurl 
  Title Using observed seabird fallout records to infer patterns of attraction to artificial light Type Journal Article
  Year 2013 Publication Endangered Species Research Abbreviated Journal  
  Volume 22 Issue 3 Pages 225-234  
  Keywords Animals; Anthropogenic light; GIS-based modeling; Hawaii; Kauai; Light attraction; Procellariiformes; Newell’s shearwater; Seabird conservation  
  Abstract Attraction of fledgling shearwaters, petrels, and storm-petrels to artificial light has been documented for decades on islands around the world and is considered a significant threat to many species. Although large numbers of downed birds have been observed after being disoriented by light, several important elements of this ‘fallout’ phenomenon are unknown, including the locations along the path from nest to ocean at which attraction and/or disorientation occurs and whether fledglings can be attracted back to land after reaching the ocean in numbers large enough to contribute significantly to fallout. To investigate these questions, we compared observed Newell’s shearwater Puffinus newelli fallout records (from 1998 to 2009) on Kauai, USA, with expected numbers generated from several hypothetical models containing basic assumptions related to fledgling movement and attraction to light. Based on our results, the spatial pattern of observed fallout is consistent with the amount of light that fledglings may view along their first flights to and beyond the coastline. This suggests that even fledglings from dark regions of the island may not be safe because they may view light after reaching the ocean and still be susceptible to attraction. These findings support recent modeling efforts predicting that most birds fledging from Kauai are likely exposed to at least some anthropogenic light. As nocturnal use of light by humans is unlikely to be eliminated, research on the types of artificial light that are both useful to humans and safe for seabirds may be crucial for the conservation of these important marine animals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 383  
Permanent link to this record
 

 
Author Boscarino, B.T.; Rudstam, L.G.; Eillenberger, J.L.; O'Gorman, R. url  doi
openurl 
  Title Importance of light, temperature, zooplankton and fish in predicting the nighttime vertical distribution of Mysis diluviana Type Journal Article
  Year 2009 Publication Aquat Biol Abbreviated Journal  
  Volume 5 Issue Pages 263-279  
  Keywords Animals; Mysis relicta; Modeling; Migration; Zooplankton; Vertical distribution; DVM  
  Abstract The opossum shrimp Mysis diluviana (formerly M. relicta) performs large amplitude diel vertical migrations in Lake Ontario and its nighttime distribution is influenced by temperature, light and the distribution of its predators and prey. At one location in southeastern Lake Ontario, we measured the vertical distribution of mysids, mysid predators (i.e. planktivorous fishes) and mysid prey (i.e. zooplankton), in addition to light and temperature, on 8 occasions from May to September, 2004 and 2005. We use these data to test 3 different predictive models of mysid habitat selection, based on: (1) laboratory-derived responses of mysids to different light and temperature gradients in the absence of predator or prey cues; (2) growth rate of mysids, as estimated with a mysid bioenergetics model, given known prey densities and temperatures at different depths in the water column; (3) ratio of growth rates (g) and mortality risk (μ) associated with the distribution of predatory fishes. The model based on light and temperature preferences was a better predictor of mysid vertical distribution than the models based on growth rate and g:μ on all 8 occasions. Although mysid temperature and light preferences probably evolved as mechanisms to reduce predation while increasing foraging intake, the response to temperature and light alone predicts mysid vertical distribution across seasons in Lake Ontario.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 402  
Permanent link to this record
 

 
Author Crumey, A. url  doi
openurl 
  Title Human Contrast Threshold and Astronomical Visibility. Type Journal Article
  Year 2014 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal MNRAS  
  Volume 422 Issue 3 Pages 2600-2619  
  Keywords Vision; visibility; skyglow; sky brightness; modeling  
  Abstract The standard visibility model in light-pollution studies is the formula of Hecht, as used e.g. by Schaefer. However, it is applicable only to point sources and is shown to be of limited accuracy. A new visibility model is presented for uniform achromatic targets of any size against background luminances ranging from zero to full daylight, produced by a systematic procedure applicable to any appropriate data set (e.g. Blackwell's), and based on a simple but previously unrecognized empirical relation between contrast threshold and adaptation luminance. The scotopic luminance correction for variable spectral radiance (colour index) is calculated. For point sources, the model is more accurate than Hecht's formula and is verified using telescopic data collected at Mount Wilson in 1947, enabling the sky brightness at that time to be determined. The result is darker than the calculation by Garstang, implying that light pollution grew more rapidly in subsequent decades than has been supposed. The model is applied to the nebular observations of William Herschel, enabling his visual performance to be quantified. Proposals are made regarding sky quality indicators for public use.  
  Address Department of Humanities, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; andrew.crumey(at)northumbria.ac.uk  
  Corporate Author Thesis  
  Publisher Oxford Journals Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 536  
Permanent link to this record
 

 
Author Rea, M. S.; Bierman, A. url  openurl
  Title Spectral considerations for outdoor lighting: Consequences for sky glow Type Journal Article
  Year 2014 Publication Lighting Research and Technology Abbreviated Journal Lighting Res. & Tech.  
  Volume 47 Issue 8 Pages 920-930  
  Keywords Lighting; skyglow; spectrum; scattering; aerosol; modeling  
  Abstract It is well known that the magnitude of sky glow on a clear night depends upon the aerosol content in the atmosphere and the spectral power distribution (amount and spectrum). Sources with a greater proportion of short-wavelength radiation produce more backscattered radiation, but as aerosol density increases, the differential effect of spectrum becomes smaller. Sky glow magnitude also depends upon the operating characteristics of the detector and will be greater when the spectrum of the backscattered radiation is tuned to the spectral band-pass characteristics of the detector. The human visual system is most often used to assess sky glow magnitude, but its spectral response is not limited to a single, univariate detector. Rather, the retina is composed of many neural channels, each with its own spectral and absolute sensitivities to optical radiation. Since we can use a different neural channel to see an individual star than we do to gain an overall impression of sky brightness, changes to the spectral power distribution of backscattered radiation differentially, and simultaneously, affect one’s ability to see a single star and to assess sky brightness. A general method for assessing sky glow based upon aerosol content, spectral power distribution and the specific operating characteristics of a detector, human or otherwise, is offered.  
  Address Lighting Research Center, Rensselaer Polytechnic Institute, Troy, New York, USA  
  Corporate Author Thesis  
  Publisher The Society of Light and Lighting Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1065  
Permanent link to this record
 

 
Author Estrada-García, R.; Garcí­a-Gil, M.; Acosta, L.; Bará, S.; Sanchez de Miguel, A.; Zamorano, J. url  openurl
  Title Statistical modelling and satellite monitoring of upward light from public lighting Type Journal Article
  Year 2015 Publication Lighting Research and Technology Abbreviated Journal Lighting Res. & Tech.  
  Volume Issue 1477153515583181 Pages 1-30  
  Keywords Remote sensing; radiative transfer; modeling; skyglow; light pollution; urban  
  Abstract In this work, we propose an approach to estimating the amount of light wasted by being sent towards the upper hemisphere from urban areas. This is a source of light pollution. The approach is based on a predictive model that provides the fraction of light directed skywards in terms of a small set of identified explanatory variables that characterise the urban landscape and its light sources. The model, built via the statistical analysis of a wide sample of basic urban scenarios to compute accurately the amount of light wasted at each of them, establishes an optimal linear regression function that relates the fraction of wasted flux to relevant variables like the kind of luminaires, the street fill factor, the street width, the building and luminaire heights and the walls and pavement reflectances. We applied this model to evaluate the changes in emissions produced at two urban nuclei in the Deltebre municipality of Catalonia. The results agree reasonably well with those deduced from the radiance measurements made with the VIIRS instrument onboard the Suomi-NPP Earth orbiting satellite.  
  Address Escola Tècnica Superior d’Enginyeria Industrial de Barcelona (ETSEIB), Universitat Politècnica de Catalunya, Spain; manuel.garcia.gil(at)upc.edu  
  Corporate Author Thesis  
  Publisher Sage Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1155  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: