toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cinzano, P.; Falchi, F. url  doi
openurl 
  Title (down) The propagation of light pollution in the atmosphere Type Journal Article
  Year 2012 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Monthly Notices of the Royal Astronomical Society  
  Volume 427 Issue 4 Pages 3337-3357  
  Keywords radiative transfer; scattering; atmospheric effects; light pollution; site testing; light at night; Garstang model; LPTRAN; DMSP-OLS; GTOPO30; modeling; propagation  
  Abstract Recent methods to map artificial night-sky brightness and stellar visibility across large territories or their distribution over the entire sky at any site are based on computation of the propagation of light pollution with Garstang models, a simplified solution of the radiative transfer problem in the atmosphere that allows fast computation by reducing it to a ray-tracing approach. They are accurate for a clear atmosphere, when a two-scattering approximation is acceptable, which is the most common situation. We present here up-to-date extended Garstang models (EGM), which provide a more general numerical solution for the radiative transfer problem applied to the propagation of light pollution in the atmosphere. We also present the LPTRAN software package, an application of EGM to high-resolution Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) satellite measurements of artificial light emission and to GTOPO30 (Global 30 Arcsecond) digital elevation data, which provides an up-to-date method to predict the artificial brightness distribution of the night sky at any site in the world at any visible wavelength for a broad range of atmospheric situations and the artificial radiation density in the atmosphere across the territory. EGM account for (i) multiple scattering, (ii) wavelengths from 250 nm to infrared, (iii) the Earth's curvature and its screening effects, (iv) site and source elevation, (v) many kinds of atmosphere with the possibility of custom set-up (e.g. including thermal inversion layers), (vi) a mix of different boundary-layer aerosols and tropospheric aerosols, with the possibility of custom set-up, (vii) up to five aerosol layers in the upper atmosphere, including fresh and aged volcanic dust and meteoric dust, (viii) variations of the scattering phase function with elevation, (ix) continuum and line gas absorption from many species, ozone included, (x) up to five cloud layers, (xi) wavelength-dependent bidirectional reflectance of the ground surface from National Aeronautics and Space Administration (NASA) Moderate-Resolution Imaging Spectroradiometer (MODIS) satellite data, main models or custom data (snow included) and (xii) geographically variable upward light-emission function given as a three-parameter function or a Legendre polynomial series. Atmospheric scattering properties or light-pollution propagation functions from other sources can also be applied. A more general solution allows us to account also for (xiii) mountain screening, (xiv) geographical gradients of atmospheric conditions, including localized clouds and (xv) geographic distribution of ground surfaces, but suffers from too heavy computational requirements. Comparisons between predictions of classic Garstang models and EGM show close agreement for a US62 standard clear atmosphere and typical upward emission function.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 271  
Permanent link to this record
 

 
Author Zamorano, J.; Sánchez de Miguel, A.; Ocaña, F.; Pila-Diez, B.; Gómez Castaño, J.; Pascual, S.; Tapia, C.; Gallego, J.; Fernandez, A.; Nievas, M. url  doi
openurl 
  Title (down) Testing sky brightness models against radial dependency: a dense two dimensional survey around the city of Madrid, Spain Type Journal Article
  Year 2016 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal JQSRT  
  Volume 181 Issue Pages 52-66  
  Keywords Skyglow; measurements; light pollution; artificial light at night; modeling; Madrid; Spain  
  Abstract We present a study of the night sky brightness around the extended metropolitan area of Madrid using Sky Quality Meter (SQM) photometers. The map is the first to cover the spatial distribution of the sky brightness in the center of the Iberian peninsula. These surveys are neccessary to test the light pollution models that predict night sky brightness as a function of the location and brightness of the sources of light pollution and the scattering of light in the atmosphere. We describe the data-retrieval methodology, which includes an automated procedure to measure from a moving vehicle in order to speed up the data collection, providing a denser and wider survey than previous works with similar time frames. We compare the night sky brightness map to the nocturnal radiance measured from space by the DMSP satellite. We find that i) a single source model is not enough to explain the radial evolution of the night sky brightness, despite the predominance of Madrid in size and population, and ii) that the orography of the region should be taken into account when deriving geo-specific models from general first-principles models. We show the tight relationship between these two luminance measures. This finding sets up an alternative roadmap to extended studies over the globe that will not require the local deployment of photometers or trained personnel.  
  Address Dept. Astrof´ısica y CC. de la Atm´osfera, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1323  
Permanent link to this record
 

 
Author Estrada-García, R.; Garcí­a-Gil, M.; Acosta, L.; Bará, S.; Sanchez de Miguel, A.; Zamorano, J. url  openurl
  Title (down) Statistical modelling and satellite monitoring of upward light from public lighting Type Journal Article
  Year 2015 Publication Lighting Research and Technology Abbreviated Journal Lighting Res. & Tech.  
  Volume Issue 1477153515583181 Pages 1-30  
  Keywords Remote sensing; radiative transfer; modeling; skyglow; light pollution; urban  
  Abstract In this work, we propose an approach to estimating the amount of light wasted by being sent towards the upper hemisphere from urban areas. This is a source of light pollution. The approach is based on a predictive model that provides the fraction of light directed skywards in terms of a small set of identified explanatory variables that characterise the urban landscape and its light sources. The model, built via the statistical analysis of a wide sample of basic urban scenarios to compute accurately the amount of light wasted at each of them, establishes an optimal linear regression function that relates the fraction of wasted flux to relevant variables like the kind of luminaires, the street fill factor, the street width, the building and luminaire heights and the walls and pavement reflectances. We applied this model to evaluate the changes in emissions produced at two urban nuclei in the Deltebre municipality of Catalonia. The results agree reasonably well with those deduced from the radiance measurements made with the VIIRS instrument onboard the Suomi-NPP Earth orbiting satellite.  
  Address Escola Tècnica Superior d’Enginyeria Industrial de Barcelona (ETSEIB), Universitat Politècnica de Catalunya, Spain; manuel.garcia.gil(at)upc.edu  
  Corporate Author Thesis  
  Publisher Sage Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1155  
Permanent link to this record
 

 
Author Rea, M. S.; Bierman, A. url  openurl
  Title (down) Spectral considerations for outdoor lighting: Consequences for sky glow Type Journal Article
  Year 2014 Publication Lighting Research and Technology Abbreviated Journal Lighting Res. & Tech.  
  Volume 47 Issue 8 Pages 920-930  
  Keywords Lighting; skyglow; spectrum; scattering; aerosol; modeling  
  Abstract It is well known that the magnitude of sky glow on a clear night depends upon the aerosol content in the atmosphere and the spectral power distribution (amount and spectrum). Sources with a greater proportion of short-wavelength radiation produce more backscattered radiation, but as aerosol density increases, the differential effect of spectrum becomes smaller. Sky glow magnitude also depends upon the operating characteristics of the detector and will be greater when the spectrum of the backscattered radiation is tuned to the spectral band-pass characteristics of the detector. The human visual system is most often used to assess sky glow magnitude, but its spectral response is not limited to a single, univariate detector. Rather, the retina is composed of many neural channels, each with its own spectral and absolute sensitivities to optical radiation. Since we can use a different neural channel to see an individual star than we do to gain an overall impression of sky brightness, changes to the spectral power distribution of backscattered radiation differentially, and simultaneously, affect one’s ability to see a single star and to assess sky brightness. A general method for assessing sky glow based upon aerosol content, spectral power distribution and the specific operating characteristics of a detector, human or otherwise, is offered.  
  Address Lighting Research Center, Rensselaer Polytechnic Institute, Troy, New York, USA  
  Corporate Author Thesis  
  Publisher The Society of Light and Lighting Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1065  
Permanent link to this record
 

 
Author Kocifaj, M.; Solano Lamphar, H.A. url  doi
openurl 
  Title (down) Skyglow: a retrieval of the approximate radiant intensity function of ground-based light sources Type Journal Article
  Year 2014 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Monthly Notices of the Royal Astronomical Society  
  Volume 439 Issue 4 Pages 3405-3413  
  Keywords radiative transfer; atmospheric effects; light pollution; methods: observational; site testing; skyglow; modeling  
  Abstract The angular distribution of the light emitted from a city is an important source of information about public lighting systems and it also plays a key role in modelling the skyglow. Usually, the upwardly directed radiation is characterized through a parametrized emission function – a semi-empirical approach as a reasonable approximation that allows for fast computations. However, theoretical or experimental retrievals of emission characteristics are extremely difficult to obtain because of both the complexity of radiative transfer methods and/or the lack of highly specialized measuring devices.

Our research has been conducted with the specific objective to identify an efficient theoretical technique for retrieval of the emission pattern of ground-based light sources in order to determine the optimum values of the scaling parameters of the Garstang function. In particular, the input data involve the zenith luminance or radiance with horizontal illuminance or irradiance. Theoretical ratios of zenith luminance LV(0) to horizontal illuminance DV are calculated for a set of distances d that separate a hypothetical observer from the light source (a city or town). This approach is advantageous because inexpensive traditional equipment can be used to obtain the mean values of the Garstang parameters. Furthermore, it can also be applied to other parametrizable emission functions and to any measuring site, even one with a masked horizon.
 
  Address Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina, 842 48 Bratislava, Slovak Republic  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 326  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: