|   | 
Details
   web
Records
Author Bierman, A.
Title Will switching to LED outdoor lighting increase sky glow? Type (up) Journal Article
Year 2012 Publication Lighting Research and Technology Abbreviated Journal Lighting Research and Technology
Volume 44 Issue 4 Pages 449-458
Keywords LED; light emitting diode; skyglow; light pollution; modeling; Radiative transfer
Abstract As LED sources are increasingly being used for outdoor lighting, concerns are being raised about their impact on man-made sky glow. This paper compares the amount of light scattered back to Earth from a 6500 K phosphor-converted white LED light source to that from a 2050 K high pressure sodium (HPS) light source. Calculations based solely on molecular Rayleigh scattering provide an upper limit of 22% more scatter from the LED source, but are not realistic because the atmosphere has significant scatter from aerosol content. Adding in the effects of aerosols in the atmosphere, as derived from aerosol optical depth measurements and Mie scattering distributions, reduces the wavelength dependency of scattered light to where the LED source has roughly 10–20% more scattered light contributing to sky glow. Scattering ratios (LED:HPS) are calculated for different angles and atmospheric conditions.
Address Lighting Research Center, 21 Union Street, Troy, NY 12180-3352, USA; bierma2(at)rpi.edu
Corporate Author Thesis
Publisher SAGE Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1477-1535 ISBN Medium
Area Expedition Conference
Notes Luginbuhl, Boley, and Davis (2013) dispute Bierman's thesis. Approved no
Call Number IDA @ john @ Serial 269
Permanent link to this record
 

 
Author Cinzano, P.; Falchi, F.
Title The propagation of light pollution in the atmosphere Type (up) Journal Article
Year 2012 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Monthly Notices of the Royal Astronomical Society
Volume 427 Issue 4 Pages 3337-3357
Keywords radiative transfer; scattering; atmospheric effects; light pollution; site testing; light at night; Garstang model; LPTRAN; DMSP-OLS; GTOPO30; modeling; propagation
Abstract Recent methods to map artificial night-sky brightness and stellar visibility across large territories or their distribution over the entire sky at any site are based on computation of the propagation of light pollution with Garstang models, a simplified solution of the radiative transfer problem in the atmosphere that allows fast computation by reducing it to a ray-tracing approach. They are accurate for a clear atmosphere, when a two-scattering approximation is acceptable, which is the most common situation. We present here up-to-date extended Garstang models (EGM), which provide a more general numerical solution for the radiative transfer problem applied to the propagation of light pollution in the atmosphere. We also present the LPTRAN software package, an application of EGM to high-resolution Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) satellite measurements of artificial light emission and to GTOPO30 (Global 30 Arcsecond) digital elevation data, which provides an up-to-date method to predict the artificial brightness distribution of the night sky at any site in the world at any visible wavelength for a broad range of atmospheric situations and the artificial radiation density in the atmosphere across the territory. EGM account for (i) multiple scattering, (ii) wavelengths from 250 nm to infrared, (iii) the Earth's curvature and its screening effects, (iv) site and source elevation, (v) many kinds of atmosphere with the possibility of custom set-up (e.g. including thermal inversion layers), (vi) a mix of different boundary-layer aerosols and tropospheric aerosols, with the possibility of custom set-up, (vii) up to five aerosol layers in the upper atmosphere, including fresh and aged volcanic dust and meteoric dust, (viii) variations of the scattering phase function with elevation, (ix) continuum and line gas absorption from many species, ozone included, (x) up to five cloud layers, (xi) wavelength-dependent bidirectional reflectance of the ground surface from National Aeronautics and Space Administration (NASA) Moderate-Resolution Imaging Spectroradiometer (MODIS) satellite data, main models or custom data (snow included) and (xii) geographically variable upward light-emission function given as a three-parameter function or a Legendre polynomial series. Atmospheric scattering properties or light-pollution propagation functions from other sources can also be applied. A more general solution allows us to account also for (xiii) mountain screening, (xiv) geographical gradients of atmospheric conditions, including localized clouds and (xv) geographic distribution of ground surfaces, but suffers from too heavy computational requirements. Comparisons between predictions of classic Garstang models and EGM show close agreement for a US62 standard clear atmosphere and typical upward emission function.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 271
Permanent link to this record
 

 
Author Kocifaj, M.
Title Two-stream approximation for rapid modeling the light pollution levels in local atmosphere Type (up) Journal Article
Year 2012 Publication Astrophysics and Space Science Abbreviated Journal Astrophys Space Sci
Volume 341 Issue 2 Pages 301-307
Keywords Light pollution; Atmospheric effects; Methods: numerical; Radiative transfer; Scattering; modeling; two-stream approximation
Abstract The two-stream concept is used for modeling the radiative transfer in Earth's atmosphere illuminated by ground-based light sources. The light pollution levels (illuminance and irradiance) are computed for various aerosol microphysical parameters, specifically the asymmetry parameter g A , single scattering albedo ω A , and optical thickness τ A . Two distinct size distributions of Junge's and gamma-type are employed. Rather then being a monotonic function of τ A , the diffuse illuminance/irradiance shows a local minimum at specific τ A, lim independent of size distribution taken into consideration. The existence of local minima has relation to the scattering and attenuation efficiencies both of which have opposite effects. The computational scheme introduced in this paper is advantageous especially if the entire set of calculations needs to be repeated with an aim to simulate diffuse light in various situations and when altering optical states of the atmospheric environment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-640X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 273
Permanent link to this record
 

 
Author Noll, S.; Kausch, W.; Barden, M.; Jones, A.M.; Szyszka, C.; Kimeswenger, S.; Vinther, J.
Title An atmospheric radiation model for Cerro Paranal: I. The optical spectral range* Type (up) Journal Article
Year 2012 Publication Astronomy & Astrophysics Abbreviated Journal A&A
Volume 543 Issue Pages A92
Keywords atmospheric effects; site testing; radiative transfer; radiation mechanisms: general; scattering; techniques; spectroscopic; modeling; observatories; Cerro Paranal
Abstract Aims. The Earth’s atmosphere affects ground-based astronomical observations. Scattering, absorption, and radiation processes deteriorate the signal-to-noise ratio of the data received. For scheduling astronomical observations it is, therefore, important to accurately estimate the wavelength-dependent effect of the Earth’s atmosphere on the observed flux.

Methods. In order to increase the accuracy of the exposure time calculator of the European Southern Observatory’s (ESO) Very Large Telescope (VLT) at Cerro Paranal, an atmospheric model was developed as part of the Austrian ESO In-Kind contribution. It includes all relevant components, such as scattered moonlight, scattered starlight, zodiacal light, atmospheric thermal radiation and absorption, and non-thermal airglow emission. This paper focuses on atmospheric scattering processes that mostly affect the blue (<0.55&#8201;&#956;m) wavelength regime, and airglow emission lines and continuum that dominate the red (>0.55&#8201;&#956;m) wavelength regime. While the former is mainly investigated by means of radiative transfer models, the intensity and variability of the latter is studied with a sample of 1186 VLT FORS&#8201;1 spectra.

Results. For a set of parameters such as the object altitude angle, Moon-object angular distance, ecliptic latitude, bimonthly period, and solar radio flux, our model predicts atmospheric radiation and transmission at a requested resolution. A comparison of our model with the FORS&#8201;1 spectra and photometric data for the night-sky brightness from the literature, suggest a model accuracy of about 20%. This is a significant improvement with respect to existing predictive atmospheric models for astronomical exposure time calculators.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-6361 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 274
Permanent link to this record
 

 
Author Kocifaj, M.
Title Modelling the spectral behaviour of night skylight close to artificial light sources Type (up) Journal Article
Year 2010 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal MNRAS
Volume 403 Issue 4 Pages 2105-2110
Keywords scattering; atmospheric effects; light pollution; methods: numerical; Modeling
Abstract Spectral features of the night sky are simulated under cloudless conditions. Numerical runs show that spectral composition of the diffuse light changes over the whole sky and sky radiances quickly respond to altering aerosol characteristics, such as the asymmetry parameter, single scattering albedo and total optical thickness. The general trend is a steep decrease of diffuse irradiance with a distance from the city centre. Powerstar HQI-NDL lamps produce more light at short wavelengths, thus implying the higher levels of light pollution. The red light may markedly contribute to the obtrusive light if Vialox NAV-4Y lamps are considered as a prevailing source of light in the model town. In a non-turbid atmosphere, the minimum radiance is notoriously observed close to the zenith. As aerosol loading increases, the minimum radiance is shifted to larger zenith angles at the opposite side of the light source. Obtained results may serve as corrections to spectrophotometry data, as the light pollution can be easily calculated for any sky element and for any spectral band.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 276
Permanent link to this record