toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Noll, S.; Kausch, W.; Barden, M.; Jones, A.M.; Szyszka, C.; Kimeswenger, S.; Vinther, J. url  doi
openurl 
  Title An atmospheric radiation model for Cerro Paranal: I. The optical spectral range* Type Journal Article
  Year 2012 Publication Astronomy & Astrophysics Abbreviated Journal A&A  
  Volume (down) 543 Issue Pages A92  
  Keywords atmospheric effects; site testing; radiative transfer; radiation mechanisms: general; scattering; techniques; spectroscopic; modeling; observatories; Cerro Paranal  
  Abstract Aims. The Earth’s atmosphere affects ground-based astronomical observations. Scattering, absorption, and radiation processes deteriorate the signal-to-noise ratio of the data received. For scheduling astronomical observations it is, therefore, important to accurately estimate the wavelength-dependent effect of the Earth’s atmosphere on the observed flux.

Methods. In order to increase the accuracy of the exposure time calculator of the European Southern Observatory’s (ESO) Very Large Telescope (VLT) at Cerro Paranal, an atmospheric model was developed as part of the Austrian ESO In-Kind contribution. It includes all relevant components, such as scattered moonlight, scattered starlight, zodiacal light, atmospheric thermal radiation and absorption, and non-thermal airglow emission. This paper focuses on atmospheric scattering processes that mostly affect the blue (<0.55&#8201;&#956;m) wavelength regime, and airglow emission lines and continuum that dominate the red (>0.55&#8201;&#956;m) wavelength regime. While the former is mainly investigated by means of radiative transfer models, the intensity and variability of the latter is studied with a sample of 1186 VLT FORS&#8201;1 spectra.

Results. For a set of parameters such as the object altitude angle, Moon-object angular distance, ecliptic latitude, bimonthly period, and solar radio flux, our model predicts atmospheric radiation and transmission at a requested resolution. A comparison of our model with the FORS&#8201;1 spectra and photometric data for the night-sky brightness from the literature, suggest a model accuracy of about 20%. This is a significant improvement with respect to existing predictive atmospheric models for astronomical exposure time calculators.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-6361 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 274  
Permanent link to this record
 

 
Author Kocifaj, M.; Kómar, L. url  doi
openurl 
  Title A role of aerosol particles in forming urban skyglow and skyglow from distant cities Type Journal Article
  Year 2016 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal MNRAS  
  Volume (down) 458 Issue 1 Pages 438-448  
  Keywords Skyglow; scattering; atmospheric effects; artificial light; numerical modeling; GIS-based modeling; light pollution  
  Abstract Aerosol particles may represent the largest uncertainty about skyglow change in many locations under clear sky conditions. This is because aerosols are ubiquitous in the atmosphere and influence the ground-reaching radiation in different ways depending on their concentrations, origins, shapes, sizes, and compositions. Large particles tend to scatter in Fraunhofer diffraction regime, while small particles can be treated in terms of Rayleigh formalism. However, the role of particle microphysics in forming the skyglow still remains poorly quantified. We have shown in this paper that the chemistry is somehow important for backscattering from large particles that otherwise work as efficient attenuators of light pollution if composed of absorbing materials. The contribution of large particles to the urban skyglow diminishes as they become more spherical in shape. The intensity of backscattering from non-absorbing particles is more-or-less linearly decreasing function of particle radius even if number size distribution is inversely proportional to the fourth power of particle radius. This is due to single particle backscattering that generally increases steeply as the particle radius approaches large values. Forward scattering depends on the particle shape but is independent of the material composition, thus allowing for a simplistic analytical model of skyglow from distant cities. The model we have developed is based on mean value theorem for integrals and incorporates the parametrizable Garstang's emission pattern, intensity decay along optical beam path, and near-forward scattering in an atmospheric environment. Such model can be used by modellers and experimentalists for rapid estimation of skyglow from distant light sources.  
  Address ICA, Slovak Academy of Sciences, Dúbravská Road 9, 845 03 Bratislava, Slovak Republic; kocifaj(at)savba.sk  
  Corporate Author Thesis  
  Publisher Oxford Journals Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1361  
Permanent link to this record
 

 
Author Kocifaj, M.; Solano Lamphar, H.A. url  doi
openurl 
  Title Skyglow: a retrieval of the approximate radiant intensity function of ground-based light sources Type Journal Article
  Year 2014 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Monthly Notices of the Royal Astronomical Society  
  Volume (down) 439 Issue 4 Pages 3405-3413  
  Keywords radiative transfer; atmospheric effects; light pollution; methods: observational; site testing; skyglow; modeling  
  Abstract The angular distribution of the light emitted from a city is an important source of information about public lighting systems and it also plays a key role in modelling the skyglow. Usually, the upwardly directed radiation is characterized through a parametrized emission function – a semi-empirical approach as a reasonable approximation that allows for fast computations. However, theoretical or experimental retrievals of emission characteristics are extremely difficult to obtain because of both the complexity of radiative transfer methods and/or the lack of highly specialized measuring devices.

Our research has been conducted with the specific objective to identify an efficient theoretical technique for retrieval of the emission pattern of ground-based light sources in order to determine the optimum values of the scaling parameters of the Garstang function. In particular, the input data involve the zenith luminance or radiance with horizontal illuminance or irradiance. Theoretical ratios of zenith luminance LV(0) to horizontal illuminance DV are calculated for a set of distances d that separate a hypothetical observer from the light source (a city or town). This approach is advantageous because inexpensive traditional equipment can be used to obtain the mean values of the Garstang parameters. Furthermore, it can also be applied to other parametrizable emission functions and to any measuring site, even one with a masked horizon.
 
  Address Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina, 842 48 Bratislava, Slovak Republic  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 326  
Permanent link to this record
 

 
Author Cinzano, P.; Falchi, F. url  doi
openurl 
  Title The propagation of light pollution in the atmosphere Type Journal Article
  Year 2012 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Monthly Notices of the Royal Astronomical Society  
  Volume (down) 427 Issue 4 Pages 3337-3357  
  Keywords radiative transfer; scattering; atmospheric effects; light pollution; site testing; light at night; Garstang model; LPTRAN; DMSP-OLS; GTOPO30; modeling; propagation  
  Abstract Recent methods to map artificial night-sky brightness and stellar visibility across large territories or their distribution over the entire sky at any site are based on computation of the propagation of light pollution with Garstang models, a simplified solution of the radiative transfer problem in the atmosphere that allows fast computation by reducing it to a ray-tracing approach. They are accurate for a clear atmosphere, when a two-scattering approximation is acceptable, which is the most common situation. We present here up-to-date extended Garstang models (EGM), which provide a more general numerical solution for the radiative transfer problem applied to the propagation of light pollution in the atmosphere. We also present the LPTRAN software package, an application of EGM to high-resolution Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) satellite measurements of artificial light emission and to GTOPO30 (Global 30 Arcsecond) digital elevation data, which provides an up-to-date method to predict the artificial brightness distribution of the night sky at any site in the world at any visible wavelength for a broad range of atmospheric situations and the artificial radiation density in the atmosphere across the territory. EGM account for (i) multiple scattering, (ii) wavelengths from 250&#8201;nm to infrared, (iii) the Earth's curvature and its screening effects, (iv) site and source elevation, (v) many kinds of atmosphere with the possibility of custom set-up (e.g. including thermal inversion layers), (vi) a mix of different boundary-layer aerosols and tropospheric aerosols, with the possibility of custom set-up, (vii) up to five aerosol layers in the upper atmosphere, including fresh and aged volcanic dust and meteoric dust, (viii) variations of the scattering phase function with elevation, (ix) continuum and line gas absorption from many species, ozone included, (x) up to five cloud layers, (xi) wavelength-dependent bidirectional reflectance of the ground surface from National Aeronautics and Space Administration (NASA) Moderate-Resolution Imaging Spectroradiometer (MODIS) satellite data, main models or custom data (snow included) and (xii) geographically variable upward light-emission function given as a three-parameter function or a Legendre polynomial series. Atmospheric scattering properties or light-pollution propagation functions from other sources can also be applied. A more general solution allows us to account also for (xiii) mountain screening, (xiv) geographical gradients of atmospheric conditions, including localized clouds and (xv) geographic distribution of ground surfaces, but suffers from too heavy computational requirements. Comparisons between predictions of classic Garstang models and EGM show close agreement for a US62 standard clear atmosphere and typical upward emission function.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 271  
Permanent link to this record
 

 
Author Crumey, A. url  doi
openurl 
  Title Human Contrast Threshold and Astronomical Visibility. Type Journal Article
  Year 2014 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal MNRAS  
  Volume (down) 422 Issue 3 Pages 2600-2619  
  Keywords Vision; visibility; skyglow; sky brightness; modeling  
  Abstract The standard visibility model in light-pollution studies is the formula of Hecht, as used e.g. by Schaefer. However, it is applicable only to point sources and is shown to be of limited accuracy. A new visibility model is presented for uniform achromatic targets of any size against background luminances ranging from zero to full daylight, produced by a systematic procedure applicable to any appropriate data set (e.g. Blackwell's), and based on a simple but previously unrecognized empirical relation between contrast threshold and adaptation luminance. The scotopic luminance correction for variable spectral radiance (colour index) is calculated. For point sources, the model is more accurate than Hecht's formula and is verified using telescopic data collected at Mount Wilson in 1947, enabling the sky brightness at that time to be determined. The result is darker than the calculation by Garstang, implying that light pollution grew more rapidly in subsequent decades than has been supposed. The model is applied to the nebular observations of William Herschel, enabling his visual performance to be quantified. Proposals are made regarding sky quality indicators for public use.  
  Address Department of Humanities, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; andrew.crumey(at)northumbria.ac.uk  
  Corporate Author Thesis  
  Publisher Oxford Journals Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 536  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: