toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kocifaj, M. url  doi
openurl 
  Title A numerical experiment on light pollution from distant sources: Light pollution from distant sources Type Journal Article
  Year 2011 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal MNRAS  
  Volume (down) 415 Issue 4 Pages 3609-3615  
  Keywords scattering; atmospheric effects; light pollution; methods: numerical; skyglow; modeling  
  Abstract To predict the light pollution of the night-time sky realistically over any location or measuring point on the ground presents quite a difficult calculation task. Light pollution of the local atmosphere is caused by stray light, light loss or reflection of artificially illuminated ground objects or surfaces such as streets, advertisement boards or building interiors. Thus it depends on the size, shape, spatial distribution, radiative pattern and spectral characteristics of many neighbouring light sources. The actual state of the atmospheric environment and the orography of the surrounding terrain are also relevant. All of these factors together influence the spectral sky radiance/luminance in a complex manner. Knowledge of the directional behaviour of light pollution is especially important for the correct interpretation of astronomical observations. From a mathematical point of view, the light noise or veil luminance of a specific sky element is given by a superposition of scattered light beams. Theoretical models that simulate light pollution typically take into account all ground-based light sources, thus imposing great requirements on CPU and MEM. As shown in this paper, a contribution of distant sources to the light pollution might be essential under specific conditions of low turbidity and/or Garstang-like radiative patterns. To evaluate the convergence of the theoretical model, numerical experiments are made for different light sources, spectral bands and atmospheric conditions. It is shown that in the worst case the integration limit is approximately 100 km, but it can be significantly shortened for light sources with cosine-like radiative patterns.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 267  
Permanent link to this record
 

 
Author Kocifaj, M. url  doi
openurl 
  Title Modelling the spectral behaviour of night skylight close to artificial light sources Type Journal Article
  Year 2010 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal MNRAS  
  Volume (down) 403 Issue 4 Pages 2105-2110  
  Keywords scattering; atmospheric effects; light pollution; methods: numerical; Modeling  
  Abstract Spectral features of the night sky are simulated under cloudless conditions. Numerical runs show that spectral composition of the diffuse light changes over the whole sky and sky radiances quickly respond to altering aerosol characteristics, such as the asymmetry parameter, single scattering albedo and total optical thickness. The general trend is a steep decrease of diffuse irradiance with a distance from the city centre. Powerstar HQI-NDL lamps produce more light at short wavelengths, thus implying the higher levels of light pollution. The red light may markedly contribute to the obtrusive light if Vialox NAV-4Y lamps are considered as a prevailing source of light in the model town. In a non-turbid atmosphere, the minimum radiance is notoriously observed close to the zenith. As aerosol loading increases, the minimum radiance is shifted to larger zenith angles at the opposite side of the light source. Obtained results may serve as corrections to spectrophotometry data, as the light pollution can be easily calculated for any sky element and for any spectral band.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 276  
Permanent link to this record
 

 
Author Xavier Kerola, D. url  doi
openurl 
  Title Modelling artificial night-sky brightness with a polarized multiple scattering radiative transfer computer code: Modelling artificial night-sky brightness Type Journal Article
  Year 2006 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal  
  Volume (down) 365 Issue 4 Pages 1295-1299  
  Keywords Skyglow; modeling; radiative transfer; Gauss-Seidel; light pollution; Garstang model  
  Abstract As part of an ongoing investigation of radiative effects produced by hazy atmospheres, computational procedures have been developed for use in determining the brightening of the night sky as a result of urban illumination. The downwardly and upwardly directed radiances of multiply scattered light from an offending metropolitan source are computed by a straightforward Gauss-Seidel (G-S) iterative technique applied directly to the integrated form of Chandrasekhar's vectorized radiative transfer equation. Initial benchmark night-sky brightness tests of the present G-S model using fully consistent optical emission and extinction input parameters yield very encouraging results when compared with the double scattering treatment of Garstang, the only full-fledged previously available model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 278  
Permanent link to this record
 

 
Author Kocifaj, M. url  doi
openurl 
  Title Two-stream approximation for rapid modeling the light pollution levels in local atmosphere Type Journal Article
  Year 2012 Publication Astrophysics and Space Science Abbreviated Journal Astrophys Space Sci  
  Volume (down) 341 Issue 2 Pages 301-307  
  Keywords Light pollution; Atmospheric effects; Methods: numerical; Radiative transfer; Scattering; modeling; two-stream approximation  
  Abstract The two-stream concept is used for modeling the radiative transfer in Earth's atmosphere illuminated by ground-based light sources. The light pollution levels (illuminance and irradiance) are computed for various aerosol microphysical parameters, specifically the asymmetry parameter g A , single scattering albedo ω A , and optical thickness τ A . Two distinct size distributions of Junge's and gamma-type are employed. Rather then being a monotonic function of τ A , the diffuse illuminance/irradiance shows a local minimum at specific τ A, lim independent of size distribution taken into consideration. The existence of local minima has relation to the scattering and attenuation efficiencies both of which have opposite effects. The computational scheme introduced in this paper is advantageous especially if the entire set of calculations needs to be repeated with an aim to simulate diffuse light in various situations and when altering optical states of the atmospheric environment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-640X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 273  
Permanent link to this record
 

 
Author Cinzano, P.; Falchi, F.; Elvidge, C.D. url  doi
openurl 
  Title Naked-eye star visibility and limiting magnitude mapped from DMSP-OLS satellite data Type Journal Article
  Year 2001 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Monthly Notices of the Royal Astronomical Society  
  Volume (down) 323 Issue 1 Pages 34-46  
  Keywords light at night; remote sensing; GTOPO30; DMSP; light pollution; modeling; mapping  
  Abstract We extend the method introduced by Cinzano et al. (2000a) to map the artificial sky brightness in large territories from DMSP satellite data, in order to map the naked eye star visibility and telescopic limiting magnitudes. For these purposes we take into account the altitude of each land area from GTOPO30 world elevation data, the natural sky brightness in the chosen sky direction, based on Garstang modelling, the eye capability with naked eye or a telescope, based on the Schaefer (1990) and Garstang (2000b) approach, and the stellar extinction in the visual photometric band. For near zenith sky directions we also take into account screening by terrain elevation. Maps of naked eye star visibility and telescopic limiting magnitudes are useful to quantify the capability of the population to perceive our Universe, to evaluate the future evolution, to make cross correlations with statistical parameters and to recognize areas where astronomical observations or popularisation can still acceptably be made. We present, as an application, maps of naked eye star visibility and total sky brightness in V band in Europe at the zenith with a resolution of approximately 1 km.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 175  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: