toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Jung, K.; Kalko, E.K. url  doi
openurl 
  Title Where forest meets urbanization: foraging plasticity of aerial insectivorous bats in an anthropogenically altered environment Type Journal Article
  Year 2010 Publication Journal of Mammalogy Abbreviated Journal J. Mammal.  
  Volume 91 Issue 1 Pages 144-153  
  Keywords animals; flying mammals; acoustic monitoring; anthropogenic influence; artificial light; bat activity; Chiroptera; habitat plasticity; moon  
  Abstract Given worldwide rapid human population growth resulting in degradation or loss of habitats, it is important to understand how anthropogenic factors affect species presence and activity, and consequently, how well species tolerate or adapt to anthropogenically altered environments. This study, conducted in Panama, focuses on aerial insectivorous bats, a highly mobile and ecologically important, but largely understudied group. Acoustic monitoring was used to investigate habitat use in a tropical forest-town interface and microhabitat use around streetlights differing in wavelength (type of light) and accessibility (distance to vegetation). Plasticity in microhabitat use also was examined in relation to season and moonlight. We recorded a total of 25 aerial insectivorous bat species in the study area and found a subset of 20 species in town of which 18 frequently foraged around streetlights. Bat activity (passes/min) was lowest at the forest site, highest at streetlights, and intermediate in the dark areas of town. General bat activity at streetlights was concentrated at bluish-white lights compared to yellow-white and orange lights. However, bats revealed species-specific microhabitats with regard to light type, distance to vegetation, and relative light intensity. Season and moon phase affected microhabitat use around streetlights leading to microhabitat plasticity of individual species. Thus, in the forest-town interface most, but not all, aerial insectivorous bats were present in town and regularly foraged around streetlights, suggesting a species-specific tolerance for habitat alteration. Bats foraging at streetlights used microhabitats, and some species even changed microhabitats, according to season or moon phase. This indicates species-specific requirements for microhabitats and the importance of preserving habitat heterogeneity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium (up)  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ schroer @ Serial 1593  
Permanent link to this record
 

 
Author Jin, X.; Li, Y.; Zhang, J.; Zheng, J.; Liu, H. url  doi
openurl 
  Title An Approach to Evaluating Light Pollution in Residential Zones: A Case Study of Beijing Type Journal Article
  Year 2017 Publication Sustainability Abbreviated Journal Sustainability  
  Volume 9 Issue 4 Pages 652  
  Keywords Measurements; light pollution; monitoring approach; spatial distribution; residential zone; Beijing; China  
  Abstract Outdoor lighting is becoming increasingly widespread, and residents are suffering from serious light pollution as a result. Residents’ awareness of their rights to protection has gradually increased. However, due to the sometimes-inaccessible nature of residential vertical light incidence intensity data and the high cost of obtaining specific measurements, there is no appropriate hierarchic compensation for residents suffering from different degrees of light pollution. It is therefore important to measure light pollution levels and their damage at the neighborhood scale to provide residents with basic materials for proper protection and to create more politically-suitable solutions. This article presents a light pollution assessment method that is easy to perform, is low-cost and has a short data-processing cycle. This method can be used to monitor residential zone light pollution in other cities. We chose three open areas to test the spatial variation pattern of light intensity. The results are in accordance with spatial interpolation patterns and can be fit, with high precision, using the inverse distance weighted interpolation (IDW) method. This approach can also be used in three dimensions to quantitatively evaluate the distribution of light intensity. We use a mixed-use zone in Beijing known as The Place as our case study area. The vertical illumination at the windows of residential buildings ranges from 2 lux to 23 lux; the illumination in some areas is far higher than the value recommended by CIE. Such severe light pollution can seriously interfere with people’s daily lives and has a serious influence on their rest and health. The results of this survey will serve as an important database to assess whether the planning of night-time lighting is scientific, and it will help protect the rights of residents and establish distinguished compensation mechanisms for light pollution.  
  Address Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China; Tel. +86-10-5880-7455  
  Corporate Author Thesis  
  Publisher MDPI Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2071-1050 ISBN Medium (up)  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1683  
Permanent link to this record
 

 
Author Li, H.; Wu, M.; Tian, D.; Wu, L.; Niu, Z. url  doi
openurl 
  Title Monitoring and analysis of the expansion of the Ajmr Port, Davao City, Philippines using multi-source remote sensing data Type Journal Article
  Year 2019 Publication PeerJ Abbreviated Journal PeerJ  
  Volume 7 Issue Pages e7512  
  Keywords Remote Sensing; Ecological environment; Monitoring; Philippines; Remote sensing; Small ports  
  Abstract Ports have been built or expanded in a number of countries to cater to increasing maritime trade in the 21st century. Port expansion is associated with economic and environmental impacts on the local and regional scales, and these impacts can be studied using remote sensing. The present study presents new results from multi-source remote sensing monitoring of the Ajmr Port expansion. An analysis of land use and vegetation coverage at the port is used to monitor the impact of port construction on the local ecology, while changes in roads, buildings, and lights are used to monitor the economic impact. The results show that: (1) After nine years of expansion, the port area has gradually expanded from the central to the southern coastal area, with an increase of 21.68 hectares during the expansion period. After the expansion, the area of builidings and construction in the study area increased significantly, while the area of water and green areas decreased significantly, indicating that the port construction changed the land use structure of the area. (2) From the perspective of vegetation coverage, the vegetation coverage within 5 km from the port is in good condition. After 9 years, the vegetation coverage in the region between 0.6 and 1 increased from 43.71% to 44.25%, reflecting the higher overall greening level in the region. (3) By analyzing the increase in roads and buildings, it can be seen that the port's comprehensive transportation capacity has improved, the population of the region has increased significantly. As the scale of construction has been continuously expanded , the prosperity as increased. (4) By analyzing the changes in the light index, the light data from the northeast to the southwest in the region is very obvious, and it is clearly located along the coast, indicating that the economic development of the coastal zone is faster than other regions, and the coastal region has promoted the development of the inland region.  
  Address The State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2167-8359 ISBN Medium (up)  
  Area Expedition Conference  
  Notes PMID:31489267; PMCID:PMC6705383 Approved no  
  Call Number GFZ @ kyba @ Serial 2674  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: