|   | 
Details
   web
Records
Author Ciocca, M.; Wang, J.
Title By the light of the silvery Moon: fact and fiction Type Journal Article
Year 2013 Publication Physics Education Abbreviated Journal Phys. Educ.
Volume 48 Issue 3 Pages 360-367
Keywords Vision; moonlight; Purkinje effect; Purkinje shift; mesopic
Abstract Is moonlight 'silver' or 'cold'? In this paper we discuss the interesting combination of factors that contribute to the common descriptions of moonlight. Sunlight is reflected from the lunar surface and red-shifted. When traversing the atmosphere, moonlight is further depleted of short wavelength content by Rayleigh scattering. We measured the spectra of the moonlight to show these effects and compared them with sunlight. All measurements, including spectral reflectance, suggest that moonlight is redder than sunlight. The silvery Moon is just an illusion due to the properties and behaviour of our own eyes, including the responses of rods and cones and the physiological perceptive phenomenon called Purkinje shift.
Address Eastern Kentucky University, Richmond, KY, USA E-mail: marco.ciocca(at)eku.edu
Corporate Author Thesis
Publisher IOP Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9120 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 2227
Permanent link to this record
 

 
Author Craggs, J.; Guest, J.R.; Davis, M.; Simmons, J.; Dashti, E.; Sweet, M.
Title Inducing broadcast coral spawning ex situ: Closed system mesocosm design and husbandry protocol Type Journal Article
Year 2017 Publication Ecology and Evolution Abbreviated Journal Ecol Evol
Volume 7 Issue 24 Pages 11066-11078
Keywords Moonlight; Animals; *Acropora; *gametogenic cycle ex situ; *insolation; *lunar cycle; *photoperiod
Abstract For many corals, the timing of broadcast spawning correlates strongly with a number of environmental signals (seasonal temperature, lunar, and diel cycles). Robust experimental studies examining the role of these putative cues in triggering spawning have been lacking until recently because it has not been possible to predictably induce spawning in fully closed artificial mesocosms. Here, we present a closed system mesocosm aquarium design that utilizes microprocessor technology to accurately replicate environmental conditions, including photoperiod, seasonal insolation, lunar cycles, and seasonal temperature from Singapore and the Great Barrier Reef (GBR), Australia. Coupled with appropriate coral husbandry, these mesocosms were successful in inducing, for the first time, broadcast coral spawning in a fully closed artificial ex situ environment. Four Acropora species (A. hyacinthus, A. tenuis, A. millepora, and A. microclados) from two geographical locations, kept for over 1 year, completed full gametogenic cycles ex situ. The percentage of colonies developing oocytes varied from ~29% for A. hyacinthus to 100% for A. millepora and A. microclados. Within the Singapore mesocosm, A. hyacinthus exhibited the closest synchronization to wild spawning, with all four gravid colonies releasing gametes in the same lunar month as wild predicted dates. Spawning within the GBR mesocosm commenced at the predicted wild spawn date but extended over a period of 3 months. Gamete release in relation to the time postsunset for A. hyacinthus, A. millepora, and A. tenuis was consistent with time windows previously described in the wild. Spawn date in relation to full moon, however, was delayed in all species, possibly as a result of external light pollution. The system described here could broaden the number of institutions on a global scale, that can access material for broadcast coral spawning research, providing opportunities for institutions distant from coral reefs to produce large numbers of coral larvae and juveniles for research purposes and reef restoration efforts.
Address Aquatic Research Facility Environmental Sustainability Research Centre College of Life and Natural Sciences University of Derby Derby UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-7758 ISBN Medium
Area Expedition Conference
Notes PMID:29299282; PMCID:PMC5743687 Approved no
Call Number GFZ @ kyba @ Serial 2698
Permanent link to this record
 

 
Author Cui, Y.; Zhao, J.Y.; Chu, J.K.; Guan, L.; Zhang, R.
Title A Study on Polarization Pattern of Full Moonlight Based on the Neutral Points and the Meridian Type Journal Article
Year 2017 Publication Applied Mechanics and Materials Abbreviated Journal Amm
Volume 868 Issue Pages 350-356
Keywords moonlight
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1662-7482 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1694
Permanent link to this record
 

 
Author Dwyer, R.G.; Bearhop, S.; Campbell, H.A.; Bryant, D.M.
Title Shedding light on light: benefits of anthropogenic illumination to a nocturnally foraging shorebird Type Journal Article
Year 2013 Publication The Journal of Animal Ecology Abbreviated Journal J Anim Ecol
Volume 82 Issue 2 Pages 478-485
Keywords Artificial light; Dmsp/Ols; foraging strategy; moonlight; shorebirds; birds; animals; foraging; Tringa totanus; common redshank
Abstract Intertidal habitats provide important feeding areas for migratory shorebirds. Anthropogenic developments along coasts can increase ambient light levels at night across adjacent inter-tidal zones. Here, we report the effects of elevated nocturnal light levels upon the foraging strategy of a migratory shorebird (common redshank Tringa totanus) overwintering on an industrialised estuary in Northern Europe. To monitor behaviour across the full intertidal area, individuals were located by day and night using VHF transmitters, and foraging behaviour was inferred from inbuilt posture sensors. Natural light was scored using moon-phase and cloud cover information and nocturnal artificial light levels were obtained using geo-referenced DMSP/OLS night-time satellite imagery at a 1-km resolution. Under high illumination levels, the commonest and apparently preferred foraging behaviour was sight-based. Conversely, birds feeding in areas with low levels of artificial light had an elevated foraging time and fed by touch, but switched to visual rather than tactile foraging behaviour on bright moonlit nights in the absence of cloud cover. Individuals occupying areas which were illuminated continuously by lighting from a large petrochemical complex invariably exhibited a visually based foraging behaviour independently of lunar phase and cloud cover. We show that ambient light levels affect the timing and distribution of foraging opportunities for redshank. We argue that light emitted from an industrial complex improved nocturnal visibility. This allowed sight-based foraging in place of tactile foraging, implying both a preference for sight-feeding and enhanced night-time foraging opportunities under these conditions. The study highlights the value of integrating remotely sensed data and telemetry techniques to assess the effect of anthropogenic change upon nocturnal behaviour and habitat use.
Address Centre for Ecology and Conservation, School of Biosciences, University of Exeter, Cornwall Campus, Penryn, Cornwall, TR10 9EZ, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8790 ISBN Medium
Area Expedition Conference
Notes PMID:23190422 Approved no
Call Number IDA @ john @ Serial 44
Permanent link to this record
 

 
Author Gaston, K.J.; Bennie, J.; Davies, T.W.; Hopkins, J.
Title The ecological impacts of nighttime light pollution: a mechanistic appraisal Type Journal Article
Year 2013 Publication Biological Reviews of the Cambridge Philosophical Society Abbreviated Journal Biol Rev Camb Philos Soc
Volume 88 Issue 4 Pages 912-927
Keywords dark; information; light; moonlight; night; pollution; resources; rhythms; time
Abstract The ecological impacts of nighttime light pollution have been a longstanding source of concern, accentuated by realized and projected growth in electrical lighting. As human communities and lighting technologies develop, artificial light increasingly modifies natural light regimes by encroaching on dark refuges in space, in time, and across wavelengths. A wide variety of ecological implications of artificial light have been identified. However, the primary research to date is largely focused on the disruptive influence of nighttime light on higher vertebrates, and while comprehensive reviews have been compiled along taxonomic lines and within specific research domains, the subject is in need of synthesis within a common mechanistic framework. Here we propose such a framework that focuses on the cross-factoring of the ways in which artificial lighting alters natural light regimes (spatially, temporally, and spectrally), and the ways in which light influences biological systems, particularly the distinction between light as a resource and light as an information source. We review the evidence for each of the combinations of this cross-factoring. As artificial lighting alters natural patterns of light in space, time and across wavelengths, natural patterns of resource use and information flows may be disrupted, with downstream effects to the structure and function of ecosystems. This review highlights: (i) the potential influence of nighttime lighting at all levels of biological organisation (from cell to ecosystem); (ii) the significant impact that even low levels of nighttime light pollution can have; and (iii) the existence of major research gaps, particularly in terms of the impacts of light at population and ecosystem levels, identification of intensity thresholds, and the spatial extent of impacts in the vicinity of artificial lights.
Address Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9EZ, U.K
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-3231 ISBN Medium
Area Expedition Conference
Notes PMID:23565807 Approved no
Call Number IDA @ john @ Serial 14
Permanent link to this record