toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Elvidge, C. D.; Baugh, K. E.; Dietz, J. B.; Bland, T.; Sutton, P. C.; Kroehl, H. W. url  doi
openurl 
  Title Radiance calibration of DMSP-OLS low-light imaging data of human settlements. Type Journal Article
  Year 1999 Publication Remote Sensing of Environment Abbreviated Journal (up)  
  Volume 68 Issue 1 Pages 77-88  
  Keywords Remote Sensing; DMSP; DMSP-OLS; satellite; night lights; light pollution  
  Abstract Nocturnal lighting is a primary method for enabling human activity. Outdoor lighting is used extensively worldwide in residential, commercial, industrial, public facilities, and roadways. A radiance calibrated nighttime lights image of the United States has been assembled from Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS). The satellite observation of the location and intensity of nocturnal lighting provide a unique view of humanities presence and can be used as a spatial indicator for other variables that are more difficult to observe at a global scale. Examples include the modeling of population density and energy related greenhouse gas emissions.  
  Address NOAA National Geophysical Data Center, Boulder, CO USA  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kagoburian @ Serial 930  
Permanent link to this record
 

 
Author Huang, X., Wang, C., & Lu, J. url  doi
openurl 
  Title Understanding Spatiotemporal Development of Human Settlement in Hurricane-prone Areas on U.S. Atlantic and Gulf Coasts using Nighttime Remote Sensing Type Journal Article
  Year 2019 Publication Natural Hazards and Earth System Sciences Abbreviated Journal (up)  
  Volume Issue Pages 1-22  
  Keywords Remote Sensing; hurricanes; cyclones; Weather; natural disasters; DMSP-OLS; nighttime light; night lights; vegetation-adjusted NTL urban index; VANUI  
  Abstract Hurricanes, as one of the most devastating natural disasters, have posed great threats to people in coastal areas. A better understanding of spatiotemporal dynamics of human settlement in hurricane-prone areas is demanded for sustainable development. This study uses the DMSP/OLS nighttime light (NTL) data sets from 1992 to 2013 to examine human settlement development in areas with different levels of hurricane proneness. The DMSP/OLS NTL data from six satellites were intercalibrated and desaturated with AVHRR and MODIS optical imagery to derive the vegetation-adjusted NTL urban index (VANUI), a popular index that quantifies human settlement intensity. The derived VANUI time series was examined with the Mann-Kendall test and Theil-Sen test to identify significant spatiotemporal trends. To link the VANUI product to hurricane impacts, four hurricane-prone zones were extracted to represent different levels of hurricane proneness. Aside from geographic division, a wind-speed weighted track density function was developed and applied to historical North Atlantic Basin (NAB)-origin storm tracks to better categorize the four levels of hurricane proneness. Spatiotemporal patterns of human settlement in the four zones were finally analyzed. The results clearly exhibit a north-south and inland-coastal discrepancy of human settlement dynamics. This study also reveals that both the zonal extent and zonal increase rate of human settlement positively correlate with hurricane proneness levels. The intensified human settlement in high hurricane-exposure zones deserves further attention for coastal resilience.  
  Address Department of Geography, University of South Carolina, Columbia, 29208, U.S.A  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2519  
Permanent link to this record
 

 
Author Elvidge, C. D.; Erwin, E.H.; Baugh, K.E.; Ziskin, D.; Tuttle, B.T.; Ghosh, T.; Sutton, P.C. url  doi
isbn  openurl
  Title Overview of DMSP nightime lights and future possibilities Type Conference Article
  Year 2009 Publication Joint Urban Remote Sensing Event Abbreviated Journal (up)  
  Volume Issue Pages  
  Keywords Remote Sensing; DMSP; DMSP-OLS; Night lights  
  Abstract The Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) has a unique capability to collect low-light imaging data of the earth at night. The OLS and its predecessors have collected this style of data on a nightly global basis since 1972. The digital archive of OLS data extends back to 1992. Over the years several global nighttime lights products have been generated. NGDC has now produced a set of global cloud-free nighttime lights products, specifically processed for the detection of changes in lighting emitted by human settlements, spanning 1992-93 to 2008. While the OLS is far from ideal for observing nighttime lights, the DMSP nighttime lights products have been successfully used in modeling the spatial distribution of population density, carbon emissions, and economic activity.  
  Address Earth Observation Group NOAA National Geophysical Data Center Boulder, Colorado 80305 USA; chris.elvidge(at)noaa.gov  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2334-0932 ISBN 978-1-4244-3461-9 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 2668  
Permanent link to this record
 

 
Author Nguyen, C.N.; Noy, I. url  doi
openurl 
  Title Measuring the impact of insurance on urban earthquake recovery using nightlights Type Journal Article
  Year 2019 Publication Journal of Economic Geography Abbreviated Journal (up)  
  Volume in press Issue Pages lbz033  
  Keywords Remote Sensing; Earthquakes; New Zealand; Night lights  
  Abstract We measure the longer-term effect of a major earthquake on the local economy, using night-time light intensity, and focus on the role of insurance payments for damaged residential property in the recovery process. The destructive Canterbury Earthquake Sequence (2010–2011) in New Zealand is our case study. Uniquely, for this event, >95% of residential housing units were covered by insurance and almost all incurred some damage. However, insurance payments were staggered over 5 years, enabling us to identify their local impact on recovery. We find that night-time luminosity can capture the process of recovery; and that insurance payments contributed significantly to the process of local economic recovery after the earthquake. Cash settlement of claims was no more effective than insurance-managed repairs in generating local recovery. Notably, delayed payments were less affective in assisting recovery; this suggests an important role for the regulator in making sure insurance payments are made promptly after disaster events.  
  Address School of Economics and Finance, Victoria University of Wellington, Kelburn, Wellington, New Zealand; ilan.noy(at)vuw.ac.nz  
  Corporate Author Thesis  
  Publisher Oxford Academic Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1468-2702 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2750  
Permanent link to this record
 

 
Author Mazor, T.; Levin, N.; Possingham, H.P.; Levy, Y.; Rocchini, D.; Richardson, A.J.; Kark, S. url  doi
openurl 
  Title Can satellite-based night lights be used for conservation? The case of nesting sea turtles in the Mediterranean Type Journal Article
  Year 2013 Publication Biological Conservation Abbreviated Journal (up) Biological Conservation  
  Volume 159 Issue Pages 63-72  
  Keywords Artificial night lights; Caretta caretta; Chelonia mydas; Coastal conservation; Satellite imagery; Sea turtle conservation  
  Abstract Artificial night lights pose a major threat to multiple species. However, this threat is often disregarded in conservation management and action because it is difficult to quantify its effect. Increasing availability of high spatial-resolution satellite images may enable us to better incorporate this threat into future work, particularly in highly modified ecosystems such as the coastal zone. In this study we examine the potential of satellite night light imagery to predict the distribution of the endangered loggerhead (Caretta caretta) and green (Chelonia mydas) sea turtle nests in the eastern Mediterranean coastline. Using remote sensing tools and high resolution data derived from the SAC-C satellite and the International Space Station, we examined the relationship between the long term spatial patterns of sea turtle nests and the intensity of night lights along Israel’s entire Mediterranean coastline. We found that sea turtles nests are negatively related to night light intensity and are concentrated in darker sections along the coast. Our resulting GLMs showed that night lights were a significant factor for explaining the distribution of sea turtle nests. Other significant variables included: cliff presence, human population density and infrastructure. This study is one of the first to show that night lights estimated with satellite-based imagery can be used to help explain sea turtle nesting activity at a detailed resolution over large areas. This approach can facilitate the management of species affected by night lights, and will be particularly useful in areas that are inaccessible or where broad-scale prioritization of conservation action is required.  
  Address ARC Centre of Excellence for Environmental Decisions, School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3207 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 213  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: