|   | 
Details
   web
Records
Author Elvidge, C. D.; Baugh, K. E.; Dietz, J. B.; Bland, T.; Sutton, P. C.; Kroehl, H. W.
Title Radiance calibration of DMSP-OLS low-light imaging data of human settlements. Type Journal Article
Year 1999 Publication Remote Sensing of Environment Abbreviated Journal
Volume 68 Issue 1 Pages 77-88
Keywords Remote Sensing; DMSP; DMSP-OLS; satellite; night lights; light pollution
Abstract Nocturnal lighting is a primary method for enabling human activity. Outdoor lighting is used extensively worldwide in residential, commercial, industrial, public facilities, and roadways. A radiance calibrated nighttime lights image of the United States has been assembled from Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS). The satellite observation of the location and intensity of nocturnal lighting provide a unique view of humanities presence and can be used as a spatial indicator for other variables that are more difficult to observe at a global scale. Examples include the modeling of population density and energy related greenhouse gas emissions.
Address NOAA National Geophysical Data Center, Boulder, CO USA
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kagoburian @ Serial 930
Permanent link to this record
 

 
Author Elvidge, C. D.; Erwin, E.H.; Baugh, K.E.; Ziskin, D.; Tuttle, B.T.; Ghosh, T.; Sutton, P.C.
Title Overview of DMSP nightime lights and future possibilities Type Conference Article
Year 2009 Publication Joint Urban Remote Sensing Event Abbreviated Journal
Volume Issue Pages
Keywords Remote Sensing; DMSP; DMSP-OLS; Night lights
Abstract The Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) has a unique capability to collect low-light imaging data of the earth at night. The OLS and its predecessors have collected this style of data on a nightly global basis since 1972. The digital archive of OLS data extends back to 1992. Over the years several global nighttime lights products have been generated. NGDC has now produced a set of global cloud-free nighttime lights products, specifically processed for the detection of changes in lighting emitted by human settlements, spanning 1992-93 to 2008. While the OLS is far from ideal for observing nighttime lights, the DMSP nighttime lights products have been successfully used in modeling the spatial distribution of population density, carbon emissions, and economic activity.
Address Earth Observation Group NOAA National Geophysical Data Center Boulder, Colorado 80305 USA; chris.elvidge(at)noaa.gov
Corporate Author Thesis
Publisher IEEE Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2334-0932 ISBN 978-1-4244-3461-9 Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 2668
Permanent link to this record
 

 
Author Fan, J., He, H., Hu, T., Zhang, P., Yu, X., & Zhou, Y.
Title Estimation of Landscape Pattern Changes in BRICS from 1992 to 2013 Using DMSP-OLS NTL Images Type Journal Article
Year 2019 Publication Journal of the Indian Society of Remote Sensing Abbreviated Journal J Ind Soc Rem Sens
Volume 47 Issue 5 Pages 725–735
Keywords Remote Sensing; BRICS; Brazil; India; China; South Africa; nighttime light; night lights; DMSP-OLS
Abstract Nighttime light data from the Defense Meteorological Satellite Program’s Operational Linescan System are widely used for monitoring urbanization development. Brazil, Russia, India, China and South Africa (BRICS) countries have global economic and cultural influence in the new era. It was the first time for the researches about BRICS countries adopting nighttime light data to analyze the urbanization process. In this paper, we calibrated and extracted annual urbanized area patches from cities in BRICS based on a quadratic polynomial model. Nine landscape indexes were calculated to analyze urbanization process characteristics in BRICS. The results suggested that China and India both expanded more rapidly than other countries, with urban areas that increased by more than 100%. The expansion of large core cities was dominant in the urbanization of China, while emerging and expanding small urban patches were major forces in the urbanization of India. Since 1992, urbanization declined and urban areas shrunk in Russia, but core cities still maintained strength of urbanization. Due to economic recovery, urban areas near large cities in Russia began to expand. From 1992 to 2013, the urbanization process in South Africa developed slowly, as evidenced by time series fluctuations, but overall the development remained stable. The degree of urbanization in Brazil was greater than that in South Africa but less than that in Russia. Large-sized cities expanded slowly and small-sized cities clearly expanded in BRICS from 1992 to 2013.
Address School of Civil and Architectural Engineering,Shandong University of Technology, Zibo, China; anjf(at)sdut.edu.cn
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2307
Permanent link to this record
 

 
Author Huang, X., Wang, C., & Lu, J.
Title Understanding Spatiotemporal Development of Human Settlement in Hurricane-prone Areas on U.S. Atlantic and Gulf Coasts using Nighttime Remote Sensing Type Journal Article
Year 2019 Publication Natural Hazards and Earth System Sciences Abbreviated Journal
Volume Issue Pages 1-22
Keywords Remote Sensing; hurricanes; cyclones; Weather; natural disasters; DMSP-OLS; nighttime light; night lights; vegetation-adjusted NTL urban index; VANUI
Abstract Hurricanes, as one of the most devastating natural disasters, have posed great threats to people in coastal areas. A better understanding of spatiotemporal dynamics of human settlement in hurricane-prone areas is demanded for sustainable development. This study uses the DMSP/OLS nighttime light (NTL) data sets from 1992 to 2013 to examine human settlement development in areas with different levels of hurricane proneness. The DMSP/OLS NTL data from six satellites were intercalibrated and desaturated with AVHRR and MODIS optical imagery to derive the vegetation-adjusted NTL urban index (VANUI), a popular index that quantifies human settlement intensity. The derived VANUI time series was examined with the Mann-Kendall test and Theil-Sen test to identify significant spatiotemporal trends. To link the VANUI product to hurricane impacts, four hurricane-prone zones were extracted to represent different levels of hurricane proneness. Aside from geographic division, a wind-speed weighted track density function was developed and applied to historical North Atlantic Basin (NAB)-origin storm tracks to better categorize the four levels of hurricane proneness. Spatiotemporal patterns of human settlement in the four zones were finally analyzed. The results clearly exhibit a north-south and inland-coastal discrepancy of human settlement dynamics. This study also reveals that both the zonal extent and zonal increase rate of human settlement positively correlate with hurricane proneness levels. The intensified human settlement in high hurricane-exposure zones deserves further attention for coastal resilience.
Address Department of Geography, University of South Carolina, Columbia, 29208, U.S.A
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2519
Permanent link to this record
 

 
Author Levin, N.; Johansen, K.; Hacker, J.M.; Phinn, S.
Title A new source for high spatial resolution night time images -- The EROS-B commercial satellite Type Journal Article
Year 2014 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment
Volume 149 Issue Pages 1-12
Keywords Night lights; EROS-B; Land cover; Land use; Fine spatial resolution; remote sensing; satellite; light at night
Abstract City lights present one of humankind's most unique footprints on Earth as seen from space. Resulting light pollution from artificial lights obscures the night sky for astronomy and has negative impacts on biodiversity as well as on human health. However, remote sensing studies of night lights to date have been mostly limited to coarse spatial resolution sensors such as the DMSP-OLS. Here we present a new source for high spatial resolution mapping of night lights from space, derived from a commercial satellite. We tasked the Israeli EROS-B satellite to acquire two night-time light images (at a spatial resolution of 1 m) of Brisbane, Australia, and analyzed their radiometric quality and content with respect to land cover and land use. The spatial distribution of night lights as imaged by EROS-B corresponded with night-time images acquired by an airborne camera, although EROS-B was not as sensitive to low light levels. Using land cover and land use data at the statistical local area level, we could statistically explain 89% of the variability in night-time lights. Arterial roads and commercial and service areas were found to be some of the brightest land use types. Overall, we found that EROS-B imagery provides fine spatial resolution images of night lights, opening new avenues for studying light pollution in cities worldwide.
Address Department of Geography, The Hebrew University of Jerusalem, Mt. Scopus, Jerusalem 91905, Israel.
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-4257 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 307
Permanent link to this record