toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bará, S. url  doi
openurl 
  Title Black-body luminance and magnitudes per square arcsecond in the Johnson-Cousins BVR photometric bands Type Journal Article
  Year 2019 Publication Photonics Letters of Poland Abbreviated Journal Photon. Lett. Pl.  
  Volume 11 Issue 3 Pages 63  
  Keywords Skyglow; night sky brightness; luminance; photometric  
  Abstract A relevant amount of light pollution studies deal with the unwanted visual effects of artificial light at night, including the anthropogenic luminance of the sky that hinders the observation of the celestial bodies which are a main target of ground-based astrophysical research, and a key asset of the intangible heritage of humankind. Most quantitative measurements and numerical models, however, evaluate the anthropogenic sky radiance in any of the standard Johnson-Cousins UBVRI photometric bands, generally in the V one. Since the Johnson-Cousins V band is not identical with the visual CIE V-lambda used to assess luminance, the conversion between these two photometric systems turns out to be spectrum-dependent. Given its interest for practical applications, in this Letter we provide the framework to perform this conversion and the transformation constants for black-body spectra of different absolute temperatures.  
  Address Dept. Física Aplicada, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia  
  Corporate Author Thesis  
  Publisher Photonics Society of Poland Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2080-2242 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 2685  
Permanent link to this record
 

 
Author Biggs, J.D.; Fouché, T.; Bilki, F.; Zadnik, M.G. url  doi
openurl 
  Title Measuring and mapping the night sky brightness of Perth, Western Australia: Night sky brightness of Perth Type Journal Article
  Year 2012 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal  
  Volume 421 Issue 2 Pages 1450-1464  
  Keywords scattering; atmospheric effects; light pollution; techniques: photometric  
  Abstract In order to study the light pollution produced in the city of Perth, Western Australia, we have used a hand-held sky brightness meter to measure the night sky brightness across the city. The data acquired facilitated the creation of a contour map of night sky brightness across the 2400 km2 area of the city – the first such map to be produced for a city. Importantly, this map was created using a methodology borrowed from the field of geophysics – the well proven and rigorous techniques of geostatistical analysis and modelling.

A major finding of this study is the effect of land use on night sky brightness. By overlaying the night sky brightness map on to a suitably processed Landsat satellite image of Perth we found that locations near commercial and/or light industrial areas have a brighter night sky, whereas locations used for agriculture or having high vegetation coverage have a fainter night sky than surrounding areas. Urban areas have intermediate amounts of vegetation and are intermediate in brightness compared with the above-mentioned land uses. Regions with a higher density of major highways also appear to contribute to increased night sky brightness.

When corrected for the effects of direct illumination from high buildings, we found that the night sky brightness in the central business district (CBD) is very close to that expected for a city of Perth’s population from modelling work and observations obtained in earlier studies. Given that our night sky brightness measurements in Perth over 2009 and 2010 are commensurate with that measured in Canadian cities over 30 years earlier implies that the various lighting systems employed in Perth (and probably most other cities) have not been optimised to minimize light pollution over that time.

We also found that night sky brightness diminished with distance with an exponent of approximately −0.25 ± 0.02 from 3.5 to 10 km from the Perth CBD, a region characterized by urban and commercial land use. For distances from 10 out to about 40 km from the CBD the radial variation of night sky brightness steepens to have an exponent value of approximately −1.8 ± 0.2. This steepening is associated with land use because vegetation cover increases with further distance from the CBD.
 
  Address Curtin Institute of Radio Astronomy, Department of Imaging and Applied Physics, Curtin University, Bentley 6102, WA, Australia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 257  
Permanent link to this record
 

 
Author Hampf, D.; Rowell, G.; Wild, N.; Sudholz, T.; Horns, D.; Tluczykont, M. url  doi
openurl 
  Title Measurement of night sky brightness in southern Australia Type Journal Article
  Year 2011 Publication Advances in Space Research Abbreviated Journal Advances in Space Research  
  Volume 48 Issue 6 Pages 1017-1025  
  Keywords Observatories and site testing; Airglow and aurorae; Photometric, polarimetric, and spectroscopic instrumentation  
  Abstract Night sky brightness is a major source of noise both for Cherenkov telescopes as well as for wide-angle Cherenkov detectors. Therefore, it is important to know the level of night sky brightness at potential sites for future experiments.

The measurements of night sky brightness presented here were carried out at Fowler’s Gap, a research station in New South Wales, Australia, which is a potential site for the proposed TenTen Cherenkov telescope system and the planned wide-angle Cherenkov detector system HiSCORE.

A portable instrument was developed and measurements of the night sky brightness were taken in February and August 2010. Brightness levels were measured for a range of different sky regions and in various spectral bands.

The night sky brightness in the relevant wavelength regime for photomultipliers was found to be at the same level as measured in similar campaigns at the established Cherenkov telescope sites of Khomas, Namibia, and at La Palma. The brightness of dark regions in the sky is about 2 × 1012 photons/(s sr m2) between 300 nm and 650 nm, and up to four times brighter in bright regions of the sky towards the galactic plane. The brightness in V band is 21.6 magnitudes per arcsec2 in the dark regions. All brightness levels are averaged over the field of view of the instrument of about 1.3 × 10−3 sr.

The spectrum of the night sky brightness was found to be dominated by longer wavelengths, which allows to apply filters to separate the night sky brightness from the blue Cherenkov light. The possible gain in the signal to noise ratio was found to be up to 1.2, assuming an ideal low-pass filter.
 
  Address Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0273-1177 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 189  
Permanent link to this record
 

 
Author Holzhauer S.I.J.; Franke S.; Kyba C.C.M.; Manfrin A.; Klenke R.; Voigt C.C.; Lewanzik D.; Oehlert M.; Monaghan M.T.; Schneider S.; Heller S.; Kuechly H.; Brüning A.; Honnen A.-C.; Hölker F. url  doi
openurl 
  Title Out of the Dark: Establishing a Large-Scale Field Experiment to Assess the Effects of Artificial Light at Night on Species and Food Webs Type Journal Article
  Year 2015 Publication Sustainability Abbreviated Journal  
  Volume 7 Issue 11 Pages 15593-15616  
  Keywords ALAN; artificial light at night; ecosystems; freshwater; light pollution; loss of the night; photometric characterization; riparian; Verlust der Nacht  
  Abstract Artificial light at night (ALAN) is one of the most obvious hallmarks of human presence in an ecosystem. The rapidly increasing use of artificial light has fundamentally transformed nightscapes throughout most of the globe, although little is known about how ALAN impacts the biodiversity and food webs of illuminated ecosystems. We developed a large-scale experimental infrastructure to study the effects of ALAN on a light-naïve, natural riparian (i.e., terrestrial-aquatic) ecosystem. Twelve street lights (20 m apart) arranged in three rows parallel to an agricultural drainage ditch were installed on each of two sites located in a grassland ecosystem in northern Germany. A range of biotic, abiotic, and photometric data are collected regularly to study the short- and long-term effects of ALAN on behavior, species interactions, physiology, and species composition of communities. Here we describe the infrastructure setup and data collection methods, and characterize the study area including photometric measurements. None of the measured parameters differed significantly between sites in the period before illumination. Results of one short-term experiment, carried out with one site illuminated and the other acting as a control, demonstrate the attraction of ALAN by the immense and immediate increase of insect catches at the lit street lights. The experimental setup provides a unique platform for carrying out interdisciplinary research on sustainable lighting.  
  Address Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301/310, 12587 Berlin, Germany; holzhauer(at)igb-berlin.de  
  Corporate Author Thesis  
  Publisher MDPI Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ schroer @ Serial 1305  
Permanent link to this record
 

 
Author Puschnig, J.; Posch, T.; Uttenthaler, S. url  doi
openurl 
  Title Night sky photometry and spectroscopy performed at the Vienna University Observatory Type Journal Article
  Year 2014 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 139 Issue Pages 64-75  
  Keywords Atmospheric effects; Site testing; Light pollution; Techniques: photometric; Techniques: spectroscopic  
  Abstract We present night sky brightness measurements performed at the Vienna University Observatory and at the Leopold-Figl-Observatorium für Astrophysik, which is located about 35 km to the southwest of Vienna. The measurements have been performed with Sky Quality Meters made by Unihedron. They cover a time span of roughly one year and have been carried out every night, yielding a luminance value every 7 s and thus delivering a large amount of data. In this paper, the level of skyglow in Vienna, which ranges from 15 to 19.25 magSQM arcsec−2 is presented for the very first time in a systematic way. We discuss the influence of different environmental conditions on the night sky brightness and implications for human vision. We show that the circalunar rhythm of night sky brightness is almost extinguished at our observatory due to light pollution.

Additionally, we present spectra of the night sky in Vienna, taken with a 0.8 m telescope. The goal of these spectroscopic measurements was to identify the main types of light sources and the spectral lines which cause the skyglow in Vienna. It turned out that fluorescent lamps are responsible for the strongest lines of the night sky above Vienna (e.g. lines at 546 nm and at 611 nm).
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 183  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: