toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Elvidge, C.D.; Keith, D.M.; Tuttle, B.T.; Baugh, K.E. url  doi
openurl 
  Title Spectral identification of lighting type and character Type Journal Article
  Year 2010 Publication Sensors (Basel, Switzerland) Abbreviated Journal Sensors (Basel)  
  Volume 10 Issue 4 Pages 3961-3988  
  Keywords Led; Nightsat; lighting efficiency; lighting types; nighttime lights; photopic band  
  Abstract We investigated the optimal spectral bands for the identification of lighting types and the estimation of four major indices used to measure the efficiency or character of lighting. To accomplish these objectives we collected high-resolution emission spectra (350 to 2,500 nm) for forty-three different lamps, encompassing nine of the major types of lamps used worldwide. The narrow band emission spectra were used to simulate radiances in eight spectral bands including the human eye photoreceptor bands (photopic, scotopic, and “meltopic”) plus five spectral bands in the visible and near-infrared modeled on bands flown on the Landsat Thematic Mapper (TM). The high-resolution continuous spectra are superior to the broad band combinations for the identification of lighting type and are the standard for calculation of Luminous Efficacy of Radiation (LER), Correlated Color Temperature (CCT) and Color Rendering Index (CRI). Given the high cost that would be associated with building and flying a hyperspectral sensor with detection limits low enough to observe nighttime lights we conclude that it would be more feasible to fly an instrument with a limited number of broad spectral bands in the visible to near infrared. The best set of broad spectral bands among those tested is blue, green, red and NIR bands modeled on the band set flown on the Landsat Thematic Mapper. This set provides low errors on the identification of lighting types and reasonable estimates of LER and CCT when compared to the other broad band set tested. None of the broad band sets tested could make reasonable estimates of Luminous Efficacy (LE) or CRI. The photopic band proved useful for the estimation of LER. However, the three photoreceptor bands performed poorly in the identification of lighting types when compared to the bands modeled on the Landsat Thematic Mapper. Our conclusion is that it is feasible to identify lighting type and make reasonable estimates of LER and CCT using four or more spectral bands with minimal spectral overlap spanning the 0.4 to 1.0 um region.  
  Address Earth Observation Group, Solar and Terrestrial Division, NOAA National Geophysical Data Center, 325 Broadway, Boulder, CO 80305, USA. chris.elvidge@noaa.gov  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1424-8220 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:22319336; PMCID:PMC3274255 Approved no  
  Call Number IDA @ john @ Serial 275  
Permanent link to this record
 

 
Author Rea, M.S.; Bullough, J.D.; Brons, M.S. url  openurl
  Title Spectral considerations for outdoor lighting: Designing for perceived scene brightness Type Journal Article
  Year 2014 Publication Lighting Research and Technology Abbreviated Journal Lighting Res. & Tech.  
  Volume 47 Issue 8 Pages 909-919  
  Keywords Public Safety; outdoor lighting; photopic; photopic illuminance; human vision; metrics; task lighting; parking lots  
  Abstract Photopic illuminance is the photometric metric used today for specifying parking lot lighting levels. The photopic luminous efficiency function does not represent the spectral sensitivity of the perceived scene brightness of parking lots. Sources with a greater proportion of short-wavelength radiation will be seen as brighter for the same photopic illuminance. Moreover, the psychological benefit of providing people with a sense of safety and security in a parking lot is better correlated with the perceived brightness of the parking lot than with its photopic illuminance. Because photopic illuminance is not predictive of the psychological benefit expected from the parking lot lighting system, electric energy will be unnecessarily wasted if specifications are based upon this metric. Specifying parking lot lighting with a benefit metric based upon perceived scene brightness could reduce electric power requirements as well as the amount of radiant energy reflecting from the pavement and escaping into the night sky. A method of equating brightness for different spectral power distributions is provided.  
  Address Lighting Research Center, Rensselaer Polytechnic Institute, Troy, New York, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1074  
Permanent link to this record
 

 
Author Zele, A.J.; Cao, D. url  doi
openurl 
  Title Vision under mesopic and scotopic illumination Type Journal Article
  Year 2014 Publication Frontiers in Psychology Abbreviated Journal Front Psychol  
  Volume 5 Issue Pages 1594  
  Keywords vision; color; cones; mesopic; photopic; rods; scotopic; temporal  
  Abstract Evidence has accumulated that rod activation under mesopic and scotopic light levels alters visual perception and performance. Here we review the most recent developments in the measurement of rod and cone contributions to mesopic color perception and temporal processing, with a focus on data measured using a four-primary photostimulator method that independently controls rod and cone excitations. We discuss the findings in the context of rod inputs to the three primary retinogeniculate pathways to understand rod contributions to mesopic vision. Additionally, we present evidence that hue perception is possible under scotopic, pure rod-mediated conditions that involves cortical mechanisms.  
  Address Visual Perception Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago Chicago, IL, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1664-1078 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:25657632; PMCID:PMC4302711 Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 1180  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: