|   | 
Details
   web
Record
Author Zhang, K.; Zhong, X.; Zhang, G.; Li, D.; Su, Z.; Meng, Y.; Jiang, Y.
Title Thermal Stability Optimization of the Luojia 1-01 Nighttime Light Remote-Sensing Camera's Principal Distance Type Journal Article
Year (down) 2019 Publication Sensors (Basel, Switzerland) Abbreviated Journal Sensors (Basel)
Volume 19 Issue 5 Pages 990
Keywords Instrumentation; Luojia 1-01; nighttime light remote-sensing camera; principal distance; optical-passive athermal design; thermal stability
Abstract The instability of the principal distance of the nighttime light remote-sensing camera of the Luojia 1-01 satellite directly affects the geometric accuracy of images, consequently affecting the results of analysis of nighttime light remote-sensing data. Based on the theory of optical passive athermal design, a mathematical model of optical-passive athermal design for principal distance stabilization is established. Positive and negative lenses of different materials and the mechanical structures of different materials are matched to optimize the optical system. According to the index requirements of the Luojia 1-01 camera, an image-telecentric optical system was designed under the guidance of the established mathematical model. In the temperature range of -20 degrees C to +60 degrees C, the principal distance of the system changes from -0.01 mum to +0.28 mum. After on-orbit testing, the geometric accuracy of the designed nighttime light remote-sensing camera is better than 0.20 pixels and less than index requirement of 0.3 pixels, which indicating that the principal distance maintains good stability on-orbit and meets the application requirements of nighttime light remote sensing.
Address School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China. jiangyh@whu.edu.cn
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1424-8220 ISBN Medium
Area Expedition Conference
Notes PMID:30813556 Approved no
Call Number GFZ @ kyba @ Serial 2238
Permanent link to this record