toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gaston, K.J.; Bennie, J.; Davies, T.W.; Hopkins, J. url  doi
openurl 
  Title The ecological impacts of nighttime light pollution: a mechanistic appraisal Type Journal Article
  Year 2013 Publication Biological Reviews of the Cambridge Philosophical Society Abbreviated Journal (up) Biol Rev Camb Philos Soc  
  Volume 88 Issue 4 Pages 912-927  
  Keywords dark; information; light; moonlight; night; pollution; resources; rhythms; time  
  Abstract The ecological impacts of nighttime light pollution have been a longstanding source of concern, accentuated by realized and projected growth in electrical lighting. As human communities and lighting technologies develop, artificial light increasingly modifies natural light regimes by encroaching on dark refuges in space, in time, and across wavelengths. A wide variety of ecological implications of artificial light have been identified. However, the primary research to date is largely focused on the disruptive influence of nighttime light on higher vertebrates, and while comprehensive reviews have been compiled along taxonomic lines and within specific research domains, the subject is in need of synthesis within a common mechanistic framework. Here we propose such a framework that focuses on the cross-factoring of the ways in which artificial lighting alters natural light regimes (spatially, temporally, and spectrally), and the ways in which light influences biological systems, particularly the distinction between light as a resource and light as an information source. We review the evidence for each of the combinations of this cross-factoring. As artificial lighting alters natural patterns of light in space, time and across wavelengths, natural patterns of resource use and information flows may be disrupted, with downstream effects to the structure and function of ecosystems. This review highlights: (i) the potential influence of nighttime lighting at all levels of biological organisation (from cell to ecosystem); (ii) the significant impact that even low levels of nighttime light pollution can have; and (iii) the existence of major research gaps, particularly in terms of the impacts of light at population and ecosystem levels, identification of intensity thresholds, and the spatial extent of impacts in the vicinity of artificial lights.  
  Address Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9EZ, U.K  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3231 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23565807 Approved no  
  Call Number IDA @ john @ Serial 14  
Permanent link to this record
 

 
Author Blagonravov, M.L.; Bryk, A.A.; Medvedeva, E.V.; Goryachev, V.A.; Chibisov, S.M.; Kurlaeva, A.O.; Agafonov, E.D. url  doi
openurl 
  Title Structure of Rhythms of Blood Pressure, Heart Rate, Excretion of Electrolytes, and Secretion of Melatonin in Normotensive and Spontaneously Hypertensive Rats Maintained under Conditions of Prolonged Daylight Duration Type Journal Article
  Year 2019 Publication Bulletin of Experimental Biology and Medicine Abbreviated Journal (up) Bull Exp Biol Med  
  Volume 168 Issue 1 Pages 18-23  
  Keywords Animals; arterial hypertension; biological rhythms; excessive exposure to light; melatonin  
  Abstract We studied the structure of rhythms of BP, HR (by telemetric monitoring), electrolyte excretion (by capillary electrophoresis), and products of epiphyseal melatonin (by the urinary concentration of 6-sulfatoxymelatonin measured by ELISA) in normotensive Wistar-Kyoto rats and spontaneously hypertensive SHR rats maintained at 16/8 h and 20/4 h light-dark regimes. In Wister-Kyoto rats exposed to prolonged daylight, we observed changes in the amplitude, rhythm power (% of rhythm), and range of oscillations of systolic BP; HR mezor decreased. In SHR rats, mezor of HR also decreased, but other parameters of rhythms remained unchanged. Changes in electrolyte excretion were opposite in normo- and hypertensive rats. Under conditions of 20/4 h light-dark regime, daytime melatonin production tended to increase in normotensive rats and significantly increased in SHR rats. At the same time, nighttime melatonin production did not change in both normotensive and hypertensive animals. As the secretion of melatonin has similar features in animals of both lines, we can say that the epiphyseal component of the “biological clock” is not the only component of the functional system that determines the response of the studied rhythms to an increase in the duration of light exposure.  
  Address V. A. Frolov Department of General Pathology and Pathophysiology, Institute for Medicine, Peoples' Friendship University of Russia, Moscow, Russia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0007-4888 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31741240 Approved no  
  Call Number GFZ @ kyba @ Serial 2755  
Permanent link to this record
 

 
Author Stevens, R.G.; Blask, D.E.; Brainard, G.C.; Hansen, J.; Lockley, S.W.; Provencio, I.; Rea, M.S.; Reinlib, L. url  doi
openurl 
  Title Meeting report: the role of environmental lighting and circadian disruption in cancer and other diseases Type Journal Article
  Year 2007 Publication Environmental Health Perspectives Abbreviated Journal (up) Environ Health Perspect  
  Volume 115 Issue 9 Pages 1357-1362  
  Keywords Human Health; Animals; *Circadian Rhythm; Environmental Exposure; Humans; *Lighting/adverse effects; *Neoplasms/etiology; Research; breast cancer; circadian rhythms; clock genes; lighting; melatonin; phototransduction; pineal gland  
  Abstract Light, including artificial light, has a range of effects on human physiology and behavior and can therefore alter human physiology when inappropriately timed. One example of potential light-induced disruption is the effect of light on circadian organization, including the production of several hormone rhythms. Changes in light-dark exposure (e.g., by nonday occupation or transmeridian travel) shift the timing of the circadian system such that internal rhythms can become desynchronized from both the external environment and internally with each other, impairing our ability to sleep and wake at the appropriate times and compromising physiologic and metabolic processes. Light can also have direct acute effects on neuroendocrine systems, for example, in suppressing melatonin synthesis or elevating cortisol production that may have untoward long-term consequences. For these reasons, the National Institute of Environmental Health Sciences convened a workshop of a diverse group of scientists to consider how best to conduct research on possible connections between lighting and health. According to the participants in the workshop, there are three broad areas of research effort that need to be addressed. First are the basic biophysical and molecular genetic mechanisms for phototransduction for circadian, neuroendocrine, and neurobehavioral regulation. Second are the possible physiologic consequences of disrupting these circadian regulatory processes such as on hormone production, particularly melatonin, and normal and neoplastic tissue growth dynamics. Third are effects of light-induced physiologic disruption on disease occurrence and prognosis, and how prevention and treatment could be improved by application of this knowledge.  
  Address Department of Community Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030-6325, USA. bugs@uchc.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0091-6765 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17805428; PMCID:PMC1964886 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 821  
Permanent link to this record
 

 
Author Reiter, R.J.; Tan, D.X.; Korkmaz, A.; Rosales-Corral, S.A. url  doi
openurl 
  Title Melatonin and stable circadian rhythms optimize maternal, placental and fetal physiology Type Journal Article
  Year 2014 Publication Human Reproduction Update Abbreviated Journal (up) Hum Reprod Update  
  Volume 20 Issue 2 Pages 293-307  
  Keywords Human Health; Animals; Antioxidants/physiology; Biological Clocks/physiology; Circadian Rhythm/*physiology; Female; Fetus/*physiology; Humans; Mammals; Melatonin/biosynthesis/*physiology; Mice; Oxidative Stress/physiology; Parturition/physiology; Placenta/metabolism/*physiology; Pre-Eclampsia/etiology/metabolism; Pregnancy; Uterus/metabolism; circadian rhythms; fetus; melatonin; placenta; pre-eclampsia  
  Abstract BACKGROUND: Research within the last decade has shown melatonin to have previously-unsuspected beneficial actions on the peripheral reproductive organs. Likewise, numerous investigations have documented that stable circadian rhythms are also helpful in maintaining reproductive health. The relationship of melatonin and circadian rhythmicity to maternal and fetal health is summarized in this review. METHODS: Databases were searched for the related published English literature up to 15 May 2013. The search terms used in various combinations included melatonin, circadian rhythms, biological clock, suprachiasmatic nucleus, ovary, pregnancy, uterus, placenta, fetus, pre-eclampsia, intrauterine growth restriction, ischemia-reperfusion, chronodisruption, antioxidants, oxidative stress and free radicals. The results of the studies uncovered are summarized herein. RESULTS: Both melatonin and circadian rhythms impact reproduction, especially during pregnancy. Melatonin is a multifaceted molecule with direct free radical scavenging and indirect antioxidant activities. Melatonin is produced in both the ovary and in the placenta where it protects against molecular mutilation and cellular dysfunction arising from oxidative/nitrosative stress. The placenta, in particular, is often a site of excessive free radical generation due to less than optimal adhesion to the uterine wall, which leads to either persistent hypoxia or intermittent hypoxia and reoxygenation, processes that cause massive free radical generation and organ dysfunction. This may contribute to pre-eclampsia and other disorders which often complicate pregnancy. Melatonin has ameliorated free radical damage to the placenta and to the fetus in experiments using non-human mammals. Likewise, the maintenance of a regular maternal light/dark and sleep/wake cycle is important to stabilize circadian rhythms generated by the maternal central circadian pacemaker, the suprachiasmatic nuclei. Optimal circadian rhythmicity in the mother is important since her circadian clock, either directly or indirectly via the melatonin rhythm, programs the developing master oscillator of the fetus. Experimental studies have shown that disturbed maternal circadian rhythms, referred to as chronodisruption, and perturbed melatonin cycles have negative consequences for the maturing fetal oscillators, which may lead to psychological and behavioral problems in the newborn. To optimize regular circadian rhythms and prevent disturbances of the melatonin cycle during pregnancy, shift work and bright light exposure at night should be avoided, especially during the last trimester of pregnancy. Finally, melatonin synergizes with oxytocin to promote delivery of the fetus. Since blood melatonin levels are normally highest during the dark period, the propensity of childbirth to occur at night may relate to the high levels of melatonin at this time which work in concert with oxytocin to enhance the strength of uterine contractions. CONCLUSIONS: A number of conclusions naturally evolve from the data summarized in this review: (i) melatonin, of both pineal and placental origin, has essential functions in fetal maturation and placenta/uterine homeostasis; (ii) circadian clock genes, which are components of all cells including those in the peripheral reproductive organs, have important roles in reproductive and organismal (fetal and maternal) physiology; (iii) due to the potent antioxidant actions of melatonin, coupled with its virtual absence of toxicity, this indoleamine may have utility in the treatment of pre-eclampsia, intrauterine growth restriction, placental and fetal ischemia/reperfusion, etc. (iv) the propensity for parturition to occur at night may relate to the synergism between the nocturnal increase in melatonin and oxytocin.  
  Address Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1355-4786 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:24132226 Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 504  
Permanent link to this record
 

 
Author Dominoni, D.M.; Carmona-Wagner, E.O.; Hofmann, M.; Kranstauber, B.; Partecke, J. url  doi
openurl 
  Title Individual-based measurements of light intensity provide new insights into the effects of artificial light at night on daily rhythms of urban-dwelling songbirds Type Journal Article
  Year 2014 Publication Journal of Animal Ecology Abbreviated Journal (up) J Anim Ecol  
  Volume 83 Issue 3 Pages 681–692  
  Keywords Animals; Biological rhythms; light at night; light loggers; light pollution; night shift; noise; radiotelemetry; sleep disruption; temporal niche; urban sprawl  
  Abstract Summary

The growing interest in the effects of light pollution on daily and seasonal cycles of animals has led to a boost of research in recent years. In birds, it has been hypothesized that artificial light at night can affect daily aspects of behaviour, but one caveat is the lack of knowledge about the light intensity that wild animals, such as birds, are exposed to during the night.

Organisms have naturally evolved daily rhythms to adapt to the 24-h cycle of day and night, thus, it is important to investigate the potential shifts in daily cycles due to global anthropogenic processes such as urbanization.

We captured adult male European blackbirds (Turdus merula) in one rural forest and two urban sites differing in the degree of anthropogenic disturbance. We tagged these birds with light loggers and simultaneously recorded changes in activity status (active/non-active) through an automated telemetry system. We first analysed the relationship between light at night, weather conditions and date with daily activity onset and end. We then compared activity, light at night exposure and noise levels between weekdays and weekends.

Onset of daily activity was significantly advanced in both urban sites compared to the rural population, while end of daily activity did not vary either among sites. Birds exposed to higher amounts of light in the late night showed earlier onset of activity in the morning, but light at night did not influence end of daily activity. Light exposure at night and onset/end of daily activity timing was not different between weekdays and weekends, but all noise variables were. A strong seasonal effect was detected in both urban and rural populations, such as birds tended to be active earlier in the morning and later in the evening (relative to civil twilight) in the early breeding season than at later stages.

Our results point at artificial light at night as a major driver of change in timing of daily activity. Future research should focus on the costs and benefits of altered daily rhythmicity in birds thriving in urban areas.
 
  Address Department of Migration and Immuno-ecology, Max Planck Institute for Ornithology, Am Obstberg 1, 78315, Radolfzell, Germany; Department of Biology, University of Konstanz, Universitatsstrasse 10, 78464, Konstanz, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8790 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:24102250 Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 375  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: