|   | 
Details
   web
Records
Author Stevens, R.G.; Blask, D.E.; Brainard, G.C.; Hansen, J.; Lockley, S.W.; Provencio, I.; Rea, M.S.; Reinlib, L.
Title Meeting report: the role of environmental lighting and circadian disruption in cancer and other diseases Type (up) Journal Article
Year 2007 Publication Environmental Health Perspectives Abbreviated Journal Environ Health Perspect
Volume 115 Issue 9 Pages 1357-1362
Keywords Human Health; Animals; *Circadian Rhythm; Environmental Exposure; Humans; *Lighting/adverse effects; *Neoplasms/etiology; Research; breast cancer; circadian rhythms; clock genes; lighting; melatonin; phototransduction; pineal gland
Abstract Light, including artificial light, has a range of effects on human physiology and behavior and can therefore alter human physiology when inappropriately timed. One example of potential light-induced disruption is the effect of light on circadian organization, including the production of several hormone rhythms. Changes in light-dark exposure (e.g., by nonday occupation or transmeridian travel) shift the timing of the circadian system such that internal rhythms can become desynchronized from both the external environment and internally with each other, impairing our ability to sleep and wake at the appropriate times and compromising physiologic and metabolic processes. Light can also have direct acute effects on neuroendocrine systems, for example, in suppressing melatonin synthesis or elevating cortisol production that may have untoward long-term consequences. For these reasons, the National Institute of Environmental Health Sciences convened a workshop of a diverse group of scientists to consider how best to conduct research on possible connections between lighting and health. According to the participants in the workshop, there are three broad areas of research effort that need to be addressed. First are the basic biophysical and molecular genetic mechanisms for phototransduction for circadian, neuroendocrine, and neurobehavioral regulation. Second are the possible physiologic consequences of disrupting these circadian regulatory processes such as on hormone production, particularly melatonin, and normal and neoplastic tissue growth dynamics. Third are effects of light-induced physiologic disruption on disease occurrence and prognosis, and how prevention and treatment could be improved by application of this knowledge.
Address Department of Community Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030-6325, USA. bugs@uchc.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0091-6765 ISBN Medium
Area Expedition Conference
Notes PMID:17805428; PMCID:PMC1964886 Approved no
Call Number LoNNe @ kagoburian @ Serial 821
Permanent link to this record
 

 
Author Dominoni, D.
Title The effects of light pollution on biological rhythms of birds: an integrated, mechanistic perspective Type (up) Journal Article
Year 2015 Publication Journal of Ornithology Abbreviated Journal J. of Ornith.
Volume 156 Issue 1 Pages 409-418
Keywords Animals; Birds; Light pollution; Circadian rhythms; Annual rhythms; Chronodisruption; Melatonin; Deep brain photoreceptors; ipRGCs
Abstract Light pollution is considered a threat for biodiversity given the extent to which it can affect a vast number of behavioral and physiological processes in several species. This comes as no surprise as light is a fundamental, environmental cue through which organisms time their daily and seasonal activities, and alterations in the light environment have been found to affect profoundly the synchronization of the circadian clock, the endogenous mechanism that tracks and predicts variation in the external light/dark cycles. In this context, birds have been one of the most studied animal taxa, but our understanding of the effects of light pollution on the biological rhythms of avian species is mostly limited to behavioral responses. In order to understand which proximate mechanisms may be affected by artificial lights, we need an integrated perspective that focuses on light as a physiological signal, and especially on how photic information is perceived, decoded, and transmitted through the whole body. The aim of this review is to summarize the effects of light pollution on physiological and biochemical mechanisms that underlie changes in birds’ behavior, highlighting the current gaps in our knowledge and proposing future research avenues.
Address Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK; davide.dominoni@glasgow.ac.uk
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1167
Permanent link to this record
 

 
Author Kooijman, S.; van den Berg, R.; Ramkisoensing, A.; Boon, M.R.; Kuipers, E.N.; Loef, M.; Zonneveld, T.C.M.; Lucassen, E.A.; Sips, H.C.M.; Chatzispyrou, I.A.; Houtkooper, R.H.; Meijer, J.H.; Coomans, C.P.; Biermasz, N.R.; Rensen, P.C.N.
Title Prolonged daily light exposure increases body fat mass through attenuation of brown adipose tissue activity Type (up) Journal Article
Year 2015 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc Natl Acad Sci U S A
Volume 112 Issue 21 Pages 6748–6753
Keywords Animals; brown adipose tissue; circadian rhythms; light pollution; obesity; triglyceride metabolism
Abstract Disruption of circadian rhythmicity is associated with obesity and related disorders, including type 2 diabetes and cardiovascular disease. Specifically, prolonged artificial light exposure associates with obesity in humans, although the underlying mechanism is unclear. Here, we report that increasing the daily hours of light exposure increases body adiposity through attenuation of brown adipose tissue (BAT) activity, a major contributor of energy expenditure. Mice exposed to a prolonged day length of 16- and 24-h light, compared with regular 12-h light, showed increased adiposity without affecting food intake or locomotor activity. Mechanistically, we demonstrated that prolonged day length decreases sympathetic input into BAT and reduces beta3-adrenergic intracellular signaling. Concomitantly, prolonging day length decreased the uptake of fatty acids from triglyceride-rich lipoproteins, as well as of glucose from plasma selectively by BAT. We conclude that impaired BAT activity is an important mediator in the association between disturbed circadian rhythm and adiposity, and anticipate that activation of BAT may overcome the adverse metabolic consequences of disturbed circadian rhythmicity.
Address Department of Medicine, Division of Endocrinology, Einthoven Laboratory for Experimental Vascular Medicine, and
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:25964318 Approved no
Call Number LoNNe @ christopher.kyba @ Serial 1172
Permanent link to this record
 

 
Author Cornean, R.E.; Margescu, M.; Simionescu, B.
Title Disruption of the Cyrcadian System and Obesity Type (up) Journal Article
Year 2015 Publication Jurnalul Pediatrului Abbreviated Journal Jurnalul Pediatrului
Volume XVIII Issue Supplement 3 Pages 38-42
Keywords Human Health; sleep deprivation; circadian rhythms; *Chronobiology Disorders; chronodisruption; obesity
Abstract Disruption of the cyrcadian system is a relatively new concept incriminated as being responsible for obesity, cardiovascular involvement, cognitive impairment, premature aging and last but not least, cancer. Because obesity is undoubtedly assimilated today to the medical conditions related to the disruption of the normal chronobiology, this paper presents the pivotal role of chronodisruption in the neuroendocrine control of appetite among these patients.
Address University of Medicine and Pharmacy "Iuliu Hatieganu” Cluj – Napoca, Romania; recornean(as)yahoo.com
Corporate Author Thesis
Publisher Romanian Society of Pediatric Surgery Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2065-4855 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1349
Permanent link to this record
 

 
Author Qian, J.; Scheer, F.A.J.L.
Title Circadian System and Glucose Metabolism: Implications for Physiology and Disease Type (up) Journal Article
Year 2016 Publication Trends in Endocrinology and Metabolism: TEM Abbreviated Journal Trends Endocrinol Metab
Volume 27 Issue 5 Pages 282-293
Keywords Human Health; circadian rhythms; food timing; glucose metabolism; melatonin; sleep; type 2 diabetes
Abstract The circadian system serves one of the most fundamental properties present in nearly all organisms: it generates 24-h rhythms in behavioral and physiological processes and enables anticipating and adapting to daily environmental changes. Recent studies indicate that the circadian system is important in regulating the daily rhythm in glucose metabolism. Disturbance of this circadian control or of its coordination relative to the environmental/behavioral cycle, such as in shift work, eating late, or due to genetic changes, results in disturbed glucose control and increased type 2 diabetes risk. Therefore, an in-depth understanding of the mechanisms underlying glucose regulation by the circadian system and its disturbance may help in the development of therapeutic interventions against the deleterious health consequences of circadian disruption.
Address Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA; fscheer(at)bwh.harvard.edu
Corporate Author Thesis
Publisher Cell Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1043-2760 ISBN Medium
Area Expedition Conference
Notes PMID:27079518; PMCID:PMC4842150 Approved no
Call Number IDA @ john @ Serial 1446
Permanent link to this record