|   | 
Author de Meester, J.; Storch, T.
Title Optimized Performance Parameters for Nighttime Multispectral Satellite Imagery to Analyze Lightings in Urban Areas Type Journal Article
Year 2020 Publication Sensors (Basel, Switzerland) Abbreviated Journal Sensors (Basel)
Volume 20 Issue 11 Pages (down)
Keywords Instrumentation; Remote Sensing; high spatial resolution; lighting parameter; lighting type classification; multispectral band optimization; nighttime remote sensing; satellite image simulation; urban area
Abstract Contrary to its daytime counterpart, nighttime visible and near infrared (VIS/NIR) satellite imagery is limited in both spectral and spatial resolution. Nevertheless, the relevance of such systems is unquestioned with applications to, e.g., examine urban areas, derive light pollution, and estimate energy consumption. To determine optimal spectral bands together with required radiometric and spatial resolution, at-sensor radiances are simulated based on combinations of lamp spectra with typical luminances according to lighting standards, surface reflectances, and radiative transfers for the consideration of atmospheric effects. Various band combinations are evaluated for their ability to differentiate between lighting types and to estimate the important lighting parameters: efficacy to produce visible light, percentage of emissions attributable to the blue part of the spectrum, and assessment of the perceived color of radiation sources. The selected bands are located in the green, blue, yellow-orange, near infrared, and red parts of the spectrum and include one panchromatic band. However, these nighttime bands tailored to artificial light emissions differ significantly from the typical daytime bands focusing on surface reflectances. Compared to existing or proposed nighttime or daytime satellites, the recommended characteristics improve, e.g., classification of lighting types by >10%. The simulations illustrate the feasible improvements in nocturnal VIS/NIR remote sensing which will lead to advanced applications.
Address German Aerospace Center (DLR), Earth Observation Center (EOC), Munchener Str. 20, 82234 Wessling, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1424-8220 ISBN Medium
Area Expedition Conference
Notes PMID:32532117 Approved no
Call Number GFZ @ kyba @ Serial 3006
Permanent link to this record