|   | 
Details
   web
Record
Author (up) Keshet-Sitton, A.; Or-Chen, K.; Yitzhak, S.; Tzabary, I.; Haim, A.
Title Can Avoiding Light at Night Reduce the Risk of Breast Cancer? Type Journal Article
Year 2015 Publication Integrative Cancer Therapies Abbreviated Journal Integr Cancer Ther
Volume 15 Issue 2 Pages 145-152
Keywords Human Health; artificial light at night; breast cancer; latency period; rural; short wavelength illumination; urban; oncogenesis; oncology; epidemiology
Abstract Excessive exposure to artificial light at night (ALAN) suppresses nocturnal melatonin (MLT) production in the pineal gland and is, therefore, associated with an increased risk of breast cancer (BC). We examined indoor and outdoor light habits of 278 women, BC patients (n = 93), and controls (n = 185; 2010-2014). Cases and controls were age and residential area matched. Data regarding behavior in the sleeping habitat in a 5-year period, 10 to 15 years prior to disease diagnosis, were collected using a questionnaire. Sleep quality, bedtime, sleep duration, TV watching habits, presleeping reading habits, subjective illumination intensity, and type of illumination were collected. Binary logistic regression models were used to calculate odds ratios with 95% confidence intervals (ORs with 95% CIs) for BC patients in relation to those habits. OR results revealed that women who had slept longer (controls), 10 to 15 years before the time of the study, in a period of 5 years, had a significant (OR = 0.74; 95% CI = 0.57-0.97; P < .03) reduced BC risk. Likewise, women who had been moderately exposed to ALAN as a result of reading using bed light (reading lamp) illumination and women who had slept with closed shutters reduced their BC risk: OR = 0.81, 95% CI = 0.67-0.97, P < .02, and OR = 0.82, 95% CI = 0.68-0.99, P < .04, respectively. However, women who had been exposed to ALAN as a result of living near strong illumination sources were at a significantly higher BC risk (OR = 1.52; 95% CI = 1.10-2.12; P < .01). These data support the hypothesis that diminishing nighttime light exposure will diminish BC risk and incidence. This hypothesis needs to be tested directly using available testing strategies and technologies that continuously measure an individual's light exposure, its timing, and sleep length longitudinally and feed this information back to the individual, so that BC risk can be distinguished prospectively.
Address Atalya Keshet-Sitton, Department of Natural Resources and Environmental Management, Faculty of Management, University of Haifa, Mount Carmel, Haifa 31905, Israel. atalyaks(at)gmail.com
Corporate Author Thesis
Publisher SAGE Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1534-7354 ISBN Medium
Area Expedition Conference
Notes PMID:26631258 Approved no
Call Number IDA @ john @ Serial 1314
Permanent link to this record