toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Jechow, A.; Holker, F.; Kyba, C.C.M. url  doi
openurl 
  Title Using all-sky differential photometry to investigate how nocturnal clouds darken the night sky in rural areas Type Journal Article
  Year (down) 2019 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 9 Issue 1 Pages 1391  
  Keywords Skyglow; differential photometry; clouds; sky brightness  
  Abstract Artificial light at night has affected most of the natural nocturnal landscapes worldwide and the subsequent light pollution has diverse effects on flora, fauna and human well-being. To evaluate the environmental impacts of light pollution, it is crucial to understand both the natural and artificial components of light at night under all weather conditions. The night sky brightness for clear skies is relatively well understood and a reference point for a lower limit is defined. However, no such reference point exists for cloudy skies. While some studies have examined the brightening of the night sky by clouds in urban areas, the published data on the (natural) darkening by clouds is very sparse. Knowledge of reference points for the illumination of natural nocturnal environments however, is essential for experimental design and ecological modeling to assess the impacts of light pollution. Here we use differential all-sky photometry with a commercial digital camera to investigate how clouds darken sky brightness at two rural sites. The spatially resolved data enables us to identify and study the nearly unpolluted parts of the sky and to set an upper limit on ground illumination for overcast nights at sites without light pollution.  
  Address GFZ German Research Centre for Geosciences, Remote Sensing, Telegrafenberg, 14473, Potsdam, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30718668; PMCID:PMC6361923 Approved no  
  Call Number IDA @ john @ Serial 2188  
Permanent link to this record
 

 
Author Bará, S.; Tapia, C.; Zamorano, J. url  doi
openurl 
  Title Absolute Radiometric Calibration of TESS-W and SQM Night Sky Brightness Sensors Type Journal Article
  Year (down) 2019 Publication Sensors Abbreviated Journal Sensors  
  Volume 19 Issue 6 Pages 1336  
  Keywords Instrumentation; calibration; SQM; TESS; photometer; sky brightness  
  Abstract We develop a general optical model and describe the absolute radiometric calibration of the readings provided by two widely-used night sky brightness sensors based on irradiance-to-frequency conversion. The calibration involves the precise determination of the overall spectral sensitivity of the devices and also the constant G relating the output frequency of the light-to-frequency converter chip to the actual band-weighted and field-of-view averaged spectral radiance incident on the detector (brightness). From these parameters, we show how to define a rigorous astronomical absolute photometric system in which the sensor measurements can be reported in units of magnitudes per square arcsecond with precise physical meaning.  
  Address Departmento Física Aplicada, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain; salva.bara(at)usc.es  
  Corporate Author Thesis  
  Publisher MDPI Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1424-8220 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 2263  
Permanent link to this record
 

 
Author C-Sanchez, E.; Sanchez-Medina, A.J.; Alonso-Hernandez, J.B.; Voltes-Dorta, A. url  doi
openurl 
  Title Astrotourism and Night Sky Brightness Forecast: First Probabilistic Model Approach Type Journal Article
  Year (down) 2019 Publication Sensors (Basel, Switzerland) Abbreviated Journal Sensors (Basel)  
  Volume 19 Issue 13 Pages 2840  
  Keywords Society; Astrotourism; Skyglow; night sky brightness; artificial neural networks  
  Abstract Celestial tourism, also known as astrotourism, astronomical tourism or, less frequently, star tourism, refers to people's interest in visiting places where celestial phenomena can be clearly observed. Stars, skygazing, meteor showers or comets, among other phenomena, arouse people's interest, however, good night sky conditions are required to observe such phenomena. From an environmental point of view, several organisations have surfaced in defence of the protection of dark night skies against light pollution, while from an economic point of view; the idea also opens new possibilities for development in associated areas. The quality of dark skies for celestial tourism can be measured by night sky brightness (NSB), which is used to quantify the visual perception of the sky, including several light sources at a specific point on earth. The aim of this research is to model the nocturnal sky brightness by training and testing a probabilistic model using real NSB data. ARIMA and artificial neural network models have been applied to open NSB data provided by the Globe at Night international programme, with the results of this first model approach being promising and opening up new possibilities for astrotourism. To the best of the authors' knowledge, probabilistic models have not been applied to NSB forecasting.  
  Address Management Science and Business Economics Group, University of Edinburgh Business School, Edinburgh EH8 9JS, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1424-8220 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31247919 Approved no  
  Call Number GFZ @ kyba @ Serial 2571  
Permanent link to this record
 

 
Author Bará, S. url  doi
openurl 
  Title Black-body luminance and magnitudes per square arcsecond in the Johnson-Cousins BVR photometric bands Type Journal Article
  Year (down) 2019 Publication Photonics Letters of Poland Abbreviated Journal Photon. Lett. Pl.  
  Volume 11 Issue 3 Pages 63  
  Keywords Skyglow; night sky brightness; luminance; photometric  
  Abstract A relevant amount of light pollution studies deal with the unwanted visual effects of artificial light at night, including the anthropogenic luminance of the sky that hinders the observation of the celestial bodies which are a main target of ground-based astrophysical research, and a key asset of the intangible heritage of humankind. Most quantitative measurements and numerical models, however, evaluate the anthropogenic sky radiance in any of the standard Johnson-Cousins UBVRI photometric bands, generally in the V one. Since the Johnson-Cousins V band is not identical with the visual CIE V-lambda used to assess luminance, the conversion between these two photometric systems turns out to be spectrum-dependent. Given its interest for practical applications, in this Letter we provide the framework to perform this conversion and the transformation constants for black-body spectra of different absolute temperatures.  
  Address Dept. Física Aplicada, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia  
  Corporate Author Thesis  
  Publisher Photonics Society of Poland Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2080-2242 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 2685  
Permanent link to this record
 

 
Author Grauer, A.D.; Grauer, P.A.; Davies, N.; Davies, G. url  doi
openurl 
  Title Impact of Space Weather on the Natural Night Sky Type Journal Article
  Year (down) 2019 Publication Publications of the Astronomical Society of the Pacific Abbreviated Journal PASP  
  Volume 131 Issue 1005 Pages 114508  
  Keywords Darkness; night sky brightness; United States; New Zealand; Sun; space weather; solar wind  
  Abstract In 2018, Solar Cycle 24 entered a deep solar minimum. During this period, we collected night sky brightness data at Cosmic Campground International Dark Sky Sanctuary (CCIDSS) in the USA (2018 September 4–2019 January 4) and at Aotea/Great Barrier Island International Dark Sky Sanctuary (AGBIIDSS) in New Zealand (2018 March 26–August 31. These sites have artificial-light-pollution-free natural night skies. The equipment employed are identical Unihedron SQM-LU-DL meters, used as single-channel differential photometers, to scan the sky as Earth rotates on its axis. We have developed new analysis techniques which select those data points which are uninfluenced by Sun, Moon, or clouds to follow brightness changes at selected points on the celestial sphere and to measure the brightness of the airglow above its quiescent level. The 2018 natural night sky was measured to change in brightness by approximately 0.9 mag arcsec−2 at both locations. Preliminary results indicate the modulations of the light curves (brightness versus R.A.) we observed are related in complex ways to elements of space weather conditions in the near-Earth environment. In particular, episodes of increased night sky brightness are observed to be contemporaneous with geomagnetic activity, increases in mean solar wind speed, and some solar proton/electron fluence events. Charged particles in the solar wind take days to reach near-Earth environment after a coronal hole is observed to be facing in our direction. Use of this information could make it possible to predict increases in Earth’s natural night sky brightness several days in advance. What we have learned during this solar minimum leads us to search for other solar driven changes in night sky brightness as the Sun begins to move into solar maximum conditions.  
  Address Catalina Sky Survey, Lunar and Planetary Laboratory, University of Arizona, USA; algrauer(at)me.com  
  Corporate Author Thesis  
  Publisher Astronomical Society of the Pacific Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-6280 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 2696  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: