toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Schoeman, M.C. url  doi
openurl 
  Title Light pollution at stadiums favors urban exploiter bats: Selected urban exploiter bats hunt insects at stadiums Type Journal Article
  Year 2015 Publication Animal Conservation Abbreviated Journal Anim. Conserv.  
  Volume 19 Issue 2 Pages 120–130  
  Keywords Animals; artificial light; light pollution; Molossidae; predator–prey interactions; urban avoiders; urban exploiters; bats; bats; mammals; Chaerephon pumilus; Tadarida aegyptiaca; Otomops martiensseni; Mops condylurus  
  Abstract (up) Artificial night lighting by humans may destabilize ecosystems by altering light-dependent biological processes of organisms and changing the availability of light and darkness as resources of food, information and refuge. I tested the hypothesis that urban exploiters should be more likely to utilize bright, unpredictable light pollution sources such as sport stadiums and building sites than urban avoiders. I quantified insectivorous bat activity and feeding attempts at seven sport stadiums under light and dark treatments using acoustic monitoring of echolocation calls. Species richness estimators indicated that stadium inventories were complete. Activity and feeding attempts were significantly higher at lit stadiums than dark stadiums, irrespective of season or surrounding human land use. Bats exhibited species-specific differences in utilization of stadiums. As predicted, four urban exploiters – Chaerephon pumilus, Tadarida aegyptiaca, Otomops martiensseni and Scotophilus dinganii – dominated activity and feeding attempts at lit stadiums, yet one urban exploiter – Mops condylurus – was associated with dark stadiums. Activity levels at both dark and light stadiums were negatively correlated with peak echolocation frequency. Landscape-scale and finer scale abiotic variables were poor predictors of bat activity and feeding attempts. My results suggest that in addition to abiotic processes associated with urbanization, light pollution at sport stadiums may homogenize urban bat diversity by favoring selected urban exploiters.  
  Address School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Durban, South Africa; schoemanc(at)ukzn.ac.za  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-9430 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1223  
Permanent link to this record
 

 
Author Schirmer, A.E.; Gallemore, C.; Liu, T.; Magle, S.; DiNello, E.; Ahmed, H.; Gilday, T. url  doi
openurl 
  Title Mapping behaviorally relevant light pollution levels to improve urban habitat planning Type Journal Article
  Year 2019 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 9 Issue 1 Pages 1-13  
  Keywords Animals; Remote Sensing; Society; remote sensing; cities; Urban planning; urban wildlife; urban ecology  
  Abstract (up) Artificial nighttime lights have important behavioral and ecological effects on wildlife. Combining laboratory and field techniques, we identified behaviorally relevant levels of nighttime light and mapped the extent of these light levels across the city of Chicago. We began by applying a Gaussian finite mixture model to 998 sampled illumination levels around Chicago to identify clusters of light levels. A simplified sample of these levels was replicated in the laboratory to identify light levels at which C57BL/6J mice exhibited altered circadian activity patterns. We then used camera trap and high-altitude photographic data to compare our field and laboratory observations, finding activity pattern changes in the field consistent with laboratory observations. Using these results, we mapped areas across Chicago exposed to estimated illumination levels above the value associated with statistically significant behavioral changes. Based on this measure, we found that as much as 36% of the greenspace in the city is in areas illuminated at levels greater than or equal to those at which we observe behavioral differences in the field and in the laboratory. Our findings provide evidence that artificial lighting patterns may influence wildlife behavior at a broad scale throughout urban areas, and should be considered in urban habitat planning.  
  Address Northeastern Illinois University, Dept. of Biology, 5500 St. Louis Ave., Chicago, IL, 60625, USA; a-schirmer(at) neiu.edu)  
  Corporate Author Thesis  
  Publisher Nature Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 2615  
Permanent link to this record
 

 
Author Grenis, K.; Tjossem, B.; Murphy, S. url  doi
openurl 
  Title Predation of larval Lepidoptera in habitat fragments varies spatially and temporally but is not affected by light pollution Type Journal Article
  Year 2015 Publication Journal of Insect Conservation Abbreviated Journal J. of Insect Cons.  
  Volume 19 Issue 3 Pages 559–566  
  Keywords Animals; Anthropogenic disturbance; Arthropods; Conservation of Lepidoptera; Edge effects; Light pollution; Temporal variation  
  Abstract (up) As human populations continue to expand, many more species are affected by habitat fragmentation and urbanization. One of the most common themes in studies of fragmented habitats is finding higher rates of predation along habitat edges. However, field studies supporting this pattern are heavily influenced by avian literature and may not apply similarly to other organisms, such as invertebrates. Field studies of predation are typically performed during the day or do not distinguish between day and night; these studies therefore overlook daily fluctuations in predation and may miss important effects that occur solely at night, such as light pollution from streetlights. We tested whether predation of larval Lepidoptera differed between edge and core habitats and also whether predation along the habitat edge varied in response to light pollution from streetlights. We placed larvae in the core of suburban habitat patches and along the habitat edge, both under streetlights as well as between streetlights where it was dark. We found that predation rate increased in both edge and core habitats over the summer. Early season, we found daily fluctuations in predation dynamics with greater predation along the habitat edge than in the habitat core during the day, but not at night. Additionally, we found that streetlights did not affect predation rate along the habitat edge. Our results suggest that increased predation along habitat edges may be a diurnal effect.  
  Address Department of Biological Sciences, University of Denver, Denver, CO, USA  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1171  
Permanent link to this record
 

 
Author Rosenberg, Y.; Doniger, T.; Levy, O. url  doi
openurl 
  Title Sustainability of coral reefs are affected by ecological light pollution in the Gulf of Aqaba/Eilat Type Journal Article
  Year 2019 Publication Communications Biology Abbreviated Journal Commun Biol  
  Volume 2 Issue Pages 289  
  Keywords Animals; Ecology; Molecular ecology; Urban ecology  
  Abstract (up) As human populations grow and lighting technologies improve, artificial light gradually alters natural cycles of light and dark that have been consistent over long periods of geological and evolutionary time. While considerable ecological implications of artificial light have been identified in both terrestrial and aquatic habitats, knowledge about the physiological and molecular effects of light pollution is vague. To determine if ecological light pollution (ELP) impacts coral biological processes, we characterized the transcriptome of the coral Acropora eurystoma under two different light regimes: control conditions and treatment with light at night. Here we show that corals exposed to ELP have approximately 25 times more differentially expressed genes that regulate cell cycle, cell proliferation, cell growth, protein synthesis and display changes in photo physiology. The finding of this work confirms that ELP acts as a chronic disturbance that may impact the future of coral reefs.  
  Address Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900 Israel.0000 0004 1937 0503grid.22098.31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2399-3642 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31396569; PMCID:PMC6683144 Approved no  
  Call Number GFZ @ kyba @ Serial 2608  
Permanent link to this record
 

 
Author Hale, J.D.; Fairbrass, A.J.; Matthews, T.J.; Davies, G.; Sadler, J.P. url  doi
openurl 
  Title The ecological impact of city lighting scenarios: exploring gap crossing thresholds for urban bats Type Journal Article
  Year 2015 Publication Global Change Biology Abbreviated Journal Glob Chang Biol  
  Volume Issue Pages  
  Keywords Animals; Connectivity; Lighting; Movement; Pipistrellus pipistrellus; Scenarios; Urban; Urbanization; gap crossing  
  Abstract (up) As the global population urbanises, dramatic changes are expected in city lighting and the urban form, which may threaten the functioning of urban ecosystems and the services they deliver. However, little is known about the ecological impact of lighting in different urban contexts. Movement is an important ecological process that can be disrupted by artificial lighting. We explored the impact of lighting on gap crossing for Pipistrellus pipistrellus, a species of bat (Chiroptera) common within UK cities. We aimed to determine whether the probability of crossing gaps in tree cover varied with crossing distance and lighting level, through stratified field surveys. We then used the resulting data on barrier thresholds to model the landscape resistance due to lighting across an entire city and explored the potential impact of scenarios for future changes to street lighting. The level of illumination required to create a barrier effect reduced as crossing distance increased. For those gaps where crossing was recorded, bats selected the darker parts of gaps. Heavily built parts of the case study city were associated with large and brightly lit gaps, and spatial models indicate movement would be highly restricted in these areas. Under a scenario for brighter street lighting, the area of accessible land-cover was further reduced in heavily built parts of the city. We believe that this is the first study to demonstrate how lighting may create resistance to species movement throughout an entire city. That connectivity in urban areas is being disrupted for a relatively common species raises questions about the impacts on less tolerant groups and the resilience of bat communities in urban centres. However, this mechanistic approach raises the possibility that some ecological function could be restored in these areas through the strategic dimming of lighting and narrowing of gaps. This article is protected by copyright. All rights reserved.  
  Address School of Geography, Earth and Environmental Sciences, The University of Birmingham, Birmingham, West Midlands, United Kingdom  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1354-1013 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:25644403 Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 1100  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: