|   | 
Details
   web
Records
Author (up) Liu, M.; Li, W.; Zhang, B.; Hao, Q.; Xiaowei, G.; Yuchuan, L.
Title Research on the Influence of Weather Conditions on Urban Night Light Environment Type Journal Article
Year 2019 Publication Sustainable Cities and Society Abbreviated Journal Sustainable Cities and Society
Volume 54 Issue Pages 101980
Keywords Skyglow; Weather; sky brightness; Urban
Abstract The increasingly serious urban light pollution has deepened the relevant research, and weather conditions indeed have great impact on the urban night light environment. Based on the SQM instrument, fish-eye camera and weather-related systems, this paper analyzes the changing law of night sky with time and weather. The brightness of the typical clear night sky changes regularly with time, and mainly includes five phases: rapid decline phase, slow decline phase, unstable decline phase, smooth phase, and rapid increase phase of sky brightness. In two phases of the smooth sky brightness, the average sky brightness in the high and low brightness phase respectively is 18.123 mag/arcsecond2 and 18.82 mag/arcsecond2, and about 15 times and 8 times higher than those of the natural night sky. This paper establishes the regression model of typical clear night sky brightness in rapid decline phase and rapid increase phase of sky brightness. The sky magnitude brightness in rainy weather is much lower than that in clear weather, the difference is about 3 mag/arcsecond2, the brightness can be reach 15.63 mag / arcsecond2; the average magnitude brightness in snowy days is about 0.17 mag/arcsecond2 higher than that in cloudy weather. There is a significant correlation among the air quality index, the ground illumination ratio of moon, the atmospheric visibility and the sky brightness. The deepened air pollution can also intensify light pollution, which can increase to 3 and 10 times higher than the night sky brightness under the moderate and severe air pollution. The lunar cycle has the least impact on light pollution in clear days, the sky brightness with the full moon is about 2 and 3 times higher than that without the moon.
Address Corresponding author at: No.2, Ling Gong Road, Gan Jing Zi District, School of Architecture and Fine Art, Dalian University of Technology, Dalian, Liao Ning Province 116024, China; iumingyitj(at)163.com
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2210-6707 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2759
Permanent link to this record
 

 
Author (up) Liu, Z.; He, C.; Zhang, Q.; Huang, Q.; Yang, Y.
Title Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008 Type Journal Article
Year 2012 Publication Landscape and Urban Planning Abbreviated Journal Landscape and Urban Planning
Volume 106 Issue 1 Pages 62-72
Keywords China; DMSP-OLS; Information extraction; Nighttime stable light; Urban expansion; remote sensing
Abstract Timely and accurate information about the dynamics of urban expansion is vital to reveal the relationships between urban expansion and the ecosystem, to optimize land use patterns, and to promote the effective development of cities in China. Nighttime stable light data from the Defense Meteorological Satellite Program's Operational Line-scan System (DMSP-OLS) Nighttime Lights Time Series dataset provide a new source of information that can quickly reveal the dynamics of urban expansion. However, the DMSP-OLS sensor has no on-board calibration, which makes it difficult to directly compare time series data from multiple satellites. This study developed a new method for systematically correcting multi-year multi-satellite nighttime stable lights data and rapidly extracting the dynamics of urban expansion based on this corrected data for China from 1992 to 2008. The results revealed that the proposed method effectively reduced abnormal discrepancy within the nighttime stable light data and improved continuity and comparability. The dynamics of urban expansion in China from 1992 to 2008 were extracted with an average overall accuracy of 82.74% and an average Kappa of 0.40.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-2046 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 205
Permanent link to this record
 

 
Author (up) Ma, T.; Zhou, C.; Pei, T.; Haynie, S.; Fan, J.
Title Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: A comparative case study from China's cities Type Journal Article
Year 2012 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment
Volume 124 Issue Pages 99-107
Keywords Urbanization; DMSP-OLS; Nighttime light; Statistical analysis; China; remote sensing; satellite; light at night
Abstract Urbanization process involving increased population size, spatially extended land cover and intensified economic activity plays a substantial role in anthropogenic environment changes. Remotely sensed nighttime lights datasets derived from the Defense Meteorological Satellite Program's Operational Linescan System (DMSP/OLS) provide a consistent measure for characterizing trends in urban sprawl over time (Sutton, 2003). The utility of DMSP/OLS imagery for monitoring dynamics in human settlement and economic activity at regional to global scales has been widely verified in previous studies through statistical correlations between nighttime light brightness and demographic and economic variables ( and ). The quantitative relationship between long-term nighttime light signals and urbanization variables, required for extensive application of DMSP/OLS data for estimating and projecting the trajectory of urban development, however, are not well addressed for individual cities at a local scale. We here present analysis results concerning quantitative responses of stable nighttime lights derived from time series of DMSP/OLS imagery to changes in urbanization variables during 1994–2009 for more than 200 prefectural-level cities and municipalities in China. To identify the best-fitting model for nighttime lights-based measurement of urbanization processes with different development patterns, we comparatively use three regression models: linear, power-law and exponential functions to quantify the long-term relationships between nighttime weighted light area and four urbanization variables: population, gross domestic product (GDP), built-up area and electric power consumption. Our results suggest that nighttime light brightness could be an explanatory indicator for estimating urbanization dynamics at the city level. Various quantitative relationships between urban nighttime lights and urbanization variables may indicate diverse responses of DMSP/OLS nighttime light signals to anthropogenic dynamics in urbanization process in terms of demographic and economic variables. At the city level, growth in weighted lit area may take either a linear, concave (exponential) or convex (power law) form responsive to expanding human population and economic activities during urbanization. Therefore, in practice, quantitative models for using DMSP/OLS data to estimate urbanization dynamics should vary with different patterns of urban development, particularly for cities experiencing rapid urban growth at a local scale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-4257 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 219
Permanent link to this record
 

 
Author (up) Meyer, L.A.; Sullivan, S.M.P.
Title Bright lights, big city: influences of ecological light pollution on reciprocal stream-riparian invertebrate fluxes Type Journal Article
Year 2013 Publication Ecological Applications Abbreviated Journal Ecological Applications
Volume 23 Issue 6 Pages 1322-1330
Keywords ecological light pollution; ecosystem function; stream–riparian invertebrate fluxes; tetragnathid spiders; urban streams
Abstract Cities produce considerable ecological light pollution (ELP), yet the effects of artificial night lighting on biological communities and ecosystem function have not been fully explored. From June 2010 to June 2011, we surveyed aquatic emergent insects, riparian arthropods entering the water, and riparian spiders of the family Tetragnathidae at nine stream reaches representing common ambient ELP levels of Columbus, Ohio, USA, streams (low, 0.1–0.5 lux; moderate, 0.6–2.0 lux; high, 2.1–4.0 lux). In August 2011, we experimentally increased light levels at the low- and moderate-treatment reaches to 10–12 lux to represent urban streams exposed to extremely high levels of ELP. Although season exerted the dominant influence on invertebrate fluxes over the course of the year, when analyzed by season, we found that light strongly influenced multiple invertebrate responses. The experimental light addition resulted in a 44% decrease in tetragnathid spider density (P = 0.035), decreases of 16% in family richness (P = 0.040) and 76% in mean body size (P = 0.022) of aquatic emergent insects, and a 309% increase in mean body size of terrestrial arthropods (P = 0.015). Our results provide evidence that artificial light sources can alter community structure and ecosystem function in streams via changes in reciprocal aquatic–terrestrial fluxes of invertebrates.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-0761 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 102
Permanent link to this record
 

 
Author (up) Newport, J.; Shorthouse, D.J.; Manning, A.D.
Title The effects of light and noise from urban development on biodiversity: Implications for protected areas in Australia Type Journal Article
Year 2014 Publication Ecological Management & Restoration Abbreviated Journal Ecol Manag Restor
Volume 15 Issue 3 Pages 204-214
Keywords biodiversity; light; noise; pollution; protected areas; urban development; Australia; light pollution; ecology
Abstract Global population growth and associated urban development are having profound effects on biodiversity. Two major outcomes of expanding development that affect wildlife are light and noise pollution. In this paper, we review literature reporting the effects of light and noise on biodiversity, and assess implications for conservation planning in Australia. Our results clearly indicate that light and noise pollution have the potential to affect the physiology, behaviour and reproduction of a range of animal taxa. Types of effects include changes in foraging and reproductive behaviours, reduction in animal fitness, increased risk of predation and reduced reproductive success. These could have flow-on consequences at the population and ecosystem levels. We found a significant gap in knowledge of the impact of these pollutants on Australian fauna. To reduce the effect of light and noise pollution, there needs to be careful planning of urban areas in relation to protected areas, and for biodiversity more generally. Potential measures include strategically planning the types of development and associated human activities adjacent to protected areas, and the use of shields and barriers, such as covers for lights or the use of dense native vegetation screens, while still allowing movement of animals. Changes in government standards and regulations could also help to reduce the impacts of light and noise pollution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1442-7001 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 370
Permanent link to this record