toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bennie, J.; Davies, T.W.; Cruse, D.; Gaston, K.J. url  doi
openurl 
  Title Ecological effects of artificial light at night on wild plants Type Journal Article
  Year 2016 Publication Journal of Ecology Abbreviated Journal J Ecol  
  Volume 104 Issue 3 Pages 611-620  
  Keywords Plants; wild plants; photobiology; Circadian; Ecophysiology; light cycles; light pollution; photoperiodism; photopollution; physiology; sky glow; urban ecology  
  Abstract 1.Plants use light as a source of both energy and information. Plant physiological responses to light, and interactions between plants and animals (such as herbivory and pollination), have evolved under a more or less stable regime of 24-hour cycles of light and darkness, and, outside of the tropics, seasonal variation in daylength.

2.The rapid spread of outdoor electric lighting across the globe over the past century has caused an unprecedented disruption to these natural light cycles. Artificial light is widespread in the environment, varying in intensity by several orders of magnitude from faint skyglow reflected from distant cities to direct illumination of urban and suburban vegetation.

3.In many cases artificial light in the nighttime environment is sufficiently bright to induce a physiological response in plants, affecting their phenology, growth form and resource allocation. The physiology, behaviour and ecology of herbivores and pollinators is also likely to be impacted by artificial light. Thus, understanding the ecological consequences of artificial light at night is critical to determine the full impact of human activity on ecosystems.

4.Synthesis. Understanding the impacts of artificial nighttime light on wild plants and natural vegetation requires linking the knowledge gained from over a century of experimental research on the impacts of light on plants in the laboratory and greenhouse with knowledge of the intensity, spatial distribution, spectral composition and timing of light in the nighttime environment. To understand fully the extent of these impacts requires conceptual models that can (i) characterise the highly heterogeneous nature of the nighttime light environment at a scale relevant to plant physiology, and (ii) scale physiological responses to predict impacts at the level of the whole plant, population, community and ecosystem.
 
  Address Environment and Sustainability Institute, University of Exeter, Penryn, United Kimgdom; j.j.bennie(at)exeter.ac.uk  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0477 ISBN Medium  
  Area Expedition (up) Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1350  
Permanent link to this record
 

 
Author Tan, M. url  doi
openurl 
  Title Use of an inside buffer method to extract the extent of urban areas from DMSP/OLS night-time light data in North China Type Journal Article
  Year 2016 Publication GIScience & Remote Sensing Abbreviated Journal GIScience & Remote Sensing  
  Volume 53 Issue 4 Pages 444-458  
  Keywords Remote Sensing; DMSP-OLS; OLS; DMSP; inside buffer model; China; over-glow; urban areas; urban; urbanism  
  Abstract Defense Meteorological Satellite Program (DMSP)/Operational Linescan System (OLS) night-time imagery provides a valuable data source for mapping urban areas. However, the spatial extents of large cities are often over-estimated because of the effect of over-glow from night-time light if a fixed thresholding technique is used. In the work reported here, an inside buffer method was developed to solve this issue. The method is based on the fact that the area over-estimated is proportional to the extent of the lit area if a fixed threshold is used to extract urban areas in a region/county. Using this method, the extents of urban areas in North China were extracted and validated by interpretations from Landsat Thematic Mapper images. The results showed that the lit areas had a significant linear relationship with the urban areas for 120 representative cities in North China in 2000, with an R2 value of over 0.95. This demonstrates that the inside buffer method can be used to extract urban areas. The validation results showed that the inside buffer model developed in 2000 can be directly used to extract the extent of urban areas using more recent night-time light imagery. This is of great value for the timely updating of urban area databases in large regions or countries.  
  Address Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, People’s Republic of China  
  Corporate Author Thesis  
  Publisher Taylor & Francis Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1548-1603 ISBN Medium  
  Area Expedition (up) Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1352  
Permanent link to this record
 

 
Author Rowse, E.G.; Harris, S.; Jones, G. url  doi
openurl 
  Title The Switch from Low-Pressure Sodium to Light Emitting Diodes Does Not Affect Bat Activity at Street Lights Type Journal Article
  Year 2016 Publication PloS one Abbreviated Journal PLoS One  
  Volume 11 Issue 3 Pages e0150884  
  Keywords Animals; bats; England; United Kingdom; low-pressure sodium; LPS; LED; LED lighting; ecology; urban ecology; Feeding Behavior  
  Abstract We used a before-after-control-impact paired design to examine the effects of a switch from low-pressure sodium (LPS) to light emitting diode (LED) street lights on bat activity at twelve sites across southern England. LED lights produce broad spectrum 'white' light compared to LPS street lights that emit narrow spectrum, orange light. These spectral differences could influence the abundance of insects at street lights and thereby the activity of the bats that prey on them. Most of the bats flying around the LPS lights were aerial-hawking species, and the species composition of bats remained the same after the switch-over to LED. We found that the switch-over from LPS to LED street lights did not affect the activity (number of bat passes), or the proportion of passes containing feeding buzzes, of those bat species typically found in close proximity to street lights in suburban environments in Britain. This is encouraging from a conservation perspective as many existing street lights are being, or have been, switched to LED before the ecological consequences have been assessed. However, lighting of all spectra studied to date generally has a negative impact on several slow-flying bat species, and LED lights are rarely frequented by these 'light-intolerant' bat species.  
  Address School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, United Kingdom; liz.rowse(at)bristol.ac.uk  
  Corporate Author Thesis  
  Publisher PLOS Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition (up) Conference  
  Notes PMID:27008274 Approved no  
  Call Number IDA @ john @ Serial 1403  
Permanent link to this record
 

 
Author ffrench-Constant, R.; Somers-Yeates, R.; Bennie, J.; Economou, T.; Hodgson, D.; Spalding, A.; McGregor, P. url  doi
openurl 
  Title Light pollution is associated with earlier tree budburst across the United Kingdom Type Journal Article
  Year 2016 Publication Proceedings of the Royal Society B: Biological Sciences Abbreviated Journal Proc Roy Soc B Biol Sci  
  Volume 283 Issue 1833 Pages 1-9  
  Keywords Plants; light pollution, phenology, species interactions, tree budburst, temperature, urban heat islands; United Kingdom  
  Abstract The ecological impact of night-time lighting is of concern because of its well-demonstrated effects on animal behaviour. However, the potential of light pollution to change plant phenology and its corresponding knock-on effects on associated herbivores are less clear. Here, we test if artificial lighting can advance the timing of budburst in trees. We took a UK-wide 13 year dataset of spatially referenced budburst data from four deciduous tree species and matched it with both satellite imagery of night-time lighting and average spring temperature. We find that budburst occurs up to 7.5 days earlier in brighter areas, with the relationship being more pronounced for later-budding species. Excluding large urban areas from the analysis showed an even more pronounced advance of budburst, confirming that the urban ‘heat-island’ effect is not the sole cause of earlier urban budburst. Similarly, the advance in budburst across all sites is too large to be explained by increases in temperature alone. This dramatic advance of budburst illustrates the need for further experimental investigation into the impact of artificial night-time lighting on plant phenology and subsequent species interactions. As light pollution is a growing global phenomenon, the findings of this study are likely to be applicable to a wide range of species interactions across the world.  
  Address Centre for Ecology and Conservation, and 2 Environment and Sustainability Institute, University of Exeter, Penryn TR10 9EZ, UK; rf222(at)exeter.ac.uk  
  Corporate Author Thesis  
  Publisher Royal Society Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition (up) Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1472  
Permanent link to this record
 

 
Author Ratnasari, N.; Candra, E.D.; Saputra, D.H.; Perdana, A.P. url  doi
openurl 
  Title Urban Spatial Pattern and Interaction based on Analysis of Nighttime Remote Sensing Data and Geo-social Media Information Type Journal Article
  Year 2016 Publication IOP Conference Series: Earth and Environmental Science Abbreviated Journal IOP Conf. Ser.: Earth Environ. Sci.  
  Volume 47 Issue Pages 012038  
  Keywords remote sensing; geo-social media; spatial pattern; spatial interaction; urban; Indonesia  
  Abstract Urban development in Indonesia significantly increasing in line with rapid development of infrastructure, utility, and transportation network. Recently, people live depend on lights at night and social media and these two aspects can depicted urban spatial pattern and interaction. This research used nighttime remote sensing data with the VIIRS (Visible Infrared Imaging Radiometer Suite) day-night band detects lights, gas flares, auroras, and wildfires. Geo-social media information derived from twitter data gave big picture on spatial interaction from the geospatial footprint. Combined both data produced comprehensive urban spatial pattern and interaction in general for Indonesian territory. The result is shown as a preliminary study of integrating nighttime remote sensing data and geospatial footprint from twitter data.  
  Address Undergraduate Program of Cartography and Remote Sensing, Department of Geographic Information Science, Faculty of Geography, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; nila.ratnasari(at)mail.ugm.ac.id  
  Corporate Author Thesis  
  Publisher IOP Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1755-1307 ISBN Medium  
  Area Expedition (up) Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1653  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: