toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Keshet-Sitton, A.; Or-Chen, K.; Yitzhak, S.; Tzabary, I.; Haim, A. url  doi
openurl 
  Title Can Avoiding Light at Night Reduce the Risk of Breast Cancer? Type Journal Article
  Year 2015 Publication Integrative Cancer Therapies Abbreviated Journal Integr Cancer Ther  
  Volume 15 Issue 2 Pages 145-152  
  Keywords Human Health; artificial light at night; breast cancer; latency period; rural; short wavelength illumination; urban; oncogenesis; oncology; epidemiology  
  Abstract Excessive exposure to artificial light at night (ALAN) suppresses nocturnal melatonin (MLT) production in the pineal gland and is, therefore, associated with an increased risk of breast cancer (BC). We examined indoor and outdoor light habits of 278 women, BC patients (n = 93), and controls (n = 185; 2010-2014). Cases and controls were age and residential area matched. Data regarding behavior in the sleeping habitat in a 5-year period, 10 to 15 years prior to disease diagnosis, were collected using a questionnaire. Sleep quality, bedtime, sleep duration, TV watching habits, presleeping reading habits, subjective illumination intensity, and type of illumination were collected. Binary logistic regression models were used to calculate odds ratios with 95% confidence intervals (ORs with 95% CIs) for BC patients in relation to those habits. OR results revealed that women who had slept longer (controls), 10 to 15 years before the time of the study, in a period of 5 years, had a significant (OR = 0.74; 95% CI = 0.57-0.97; P < .03) reduced BC risk. Likewise, women who had been moderately exposed to ALAN as a result of reading using bed light (reading lamp) illumination and women who had slept with closed shutters reduced their BC risk: OR = 0.81, 95% CI = 0.67-0.97, P < .02, and OR = 0.82, 95% CI = 0.68-0.99, P < .04, respectively. However, women who had been exposed to ALAN as a result of living near strong illumination sources were at a significantly higher BC risk (OR = 1.52; 95% CI = 1.10-2.12; P < .01). These data support the hypothesis that diminishing nighttime light exposure will diminish BC risk and incidence. This hypothesis needs to be tested directly using available testing strategies and technologies that continuously measure an individual's light exposure, its timing, and sleep length longitudinally and feed this information back to the individual, so that BC risk can be distinguished prospectively.  
  Address Atalya Keshet-Sitton, Department of Natural Resources and Environmental Management, Faculty of Management, University of Haifa, Mount Carmel, Haifa 31905, Israel. atalyaks(at)gmail.com  
  Corporate Author Thesis  
  Publisher SAGE Place of Publication Editor  
  Language (up) English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1534-7354 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:26631258 Approved no  
  Call Number IDA @ john @ Serial 1314  
Permanent link to this record
 

 
Author Clewley, G.D.; Plummer, K.E.; Robinson, R.A.; Simm, C.H.; Toms, M.P. url  doi
openurl 
  Title The effect of artificial lighting on the arrival time of birds using garden feeding stations in winter: A missed opportunity? Type Journal Article
  Year 2015 Publication Urban Ecosystems Abbreviated Journal Urban Ecosystems  
  Volume 19 Issue 2 Pages 535–546  
  Keywords Animals; Artificial light; Citizen science; Foraging; Garden birds; Supplementary feeding; Urbanization  
  Abstract The proliferation of artificial lighting at night is one of the key anthropogenic changes associated with urbanised areas as well as some non-urban areas. Disruption to natural light/dark regimes can have considerable effects on the timing of different behaviours of birds, particularly during the breeding season. However, the effect of artificial lights on the timing of behaviours during winter has received relatively little attention, despite the fact that time partitioning of foraging can have implications for avian winter survival. In this study, we assess at a landscape scale during winter, whether birds arrive at feeding stations earlier in areas with increased levels of artificial lighting using data from a citizen science project. Arrival times of the ten most commonly recorded species were associated with a combination of the density of artificial lights, temperature, rainfall and urban land cover. We found no evidence that birds advance the onset of foraging in gardens with more artificial lights nearby; contrary to our prediction, birds generally arrived later into these areas. This is possibly a response to differences in food availability or predation risk in areas with more artificial lights. We conclude that artificial light at night may not be as important for driving the timing of foraging behaviour in winter as previously thought, but it remains to be seen whether this represents a missed opportunity to extend the foraging period or an adaptive response.  
  Address British Trust for Ornithology, The Nunnery, Thetford, Norfolk, IP24 2PU, UK; gary.clewley(at)bto.org  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language (up) English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1083-8155 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1316  
Permanent link to this record
 

 
Author Bennie, J.; Davies, T.W.; Cruse, D.; Gaston, K.J. url  doi
openurl 
  Title Ecological effects of artificial light at night on wild plants Type Journal Article
  Year 2016 Publication Journal of Ecology Abbreviated Journal J Ecol  
  Volume 104 Issue 3 Pages 611-620  
  Keywords Plants; wild plants; photobiology; Circadian; Ecophysiology; light cycles; light pollution; photoperiodism; photopollution; physiology; sky glow; urban ecology  
  Abstract 1.Plants use light as a source of both energy and information. Plant physiological responses to light, and interactions between plants and animals (such as herbivory and pollination), have evolved under a more or less stable regime of 24-hour cycles of light and darkness, and, outside of the tropics, seasonal variation in daylength.

2.The rapid spread of outdoor electric lighting across the globe over the past century has caused an unprecedented disruption to these natural light cycles. Artificial light is widespread in the environment, varying in intensity by several orders of magnitude from faint skyglow reflected from distant cities to direct illumination of urban and suburban vegetation.

3.In many cases artificial light in the nighttime environment is sufficiently bright to induce a physiological response in plants, affecting their phenology, growth form and resource allocation. The physiology, behaviour and ecology of herbivores and pollinators is also likely to be impacted by artificial light. Thus, understanding the ecological consequences of artificial light at night is critical to determine the full impact of human activity on ecosystems.

4.Synthesis. Understanding the impacts of artificial nighttime light on wild plants and natural vegetation requires linking the knowledge gained from over a century of experimental research on the impacts of light on plants in the laboratory and greenhouse with knowledge of the intensity, spatial distribution, spectral composition and timing of light in the nighttime environment. To understand fully the extent of these impacts requires conceptual models that can (i) characterise the highly heterogeneous nature of the nighttime light environment at a scale relevant to plant physiology, and (ii) scale physiological responses to predict impacts at the level of the whole plant, population, community and ecosystem.
 
  Address Environment and Sustainability Institute, University of Exeter, Penryn, United Kimgdom; j.j.bennie(at)exeter.ac.uk  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication Editor  
  Language (up) English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0477 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1350  
Permanent link to this record
 

 
Author Tan, M. url  doi
openurl 
  Title Use of an inside buffer method to extract the extent of urban areas from DMSP/OLS night-time light data in North China Type Journal Article
  Year 2016 Publication GIScience & Remote Sensing Abbreviated Journal GIScience & Remote Sensing  
  Volume 53 Issue 4 Pages 444-458  
  Keywords Remote Sensing; DMSP-OLS; OLS; DMSP; inside buffer model; China; over-glow; urban areas; urban; urbanism  
  Abstract Defense Meteorological Satellite Program (DMSP)/Operational Linescan System (OLS) night-time imagery provides a valuable data source for mapping urban areas. However, the spatial extents of large cities are often over-estimated because of the effect of over-glow from night-time light if a fixed thresholding technique is used. In the work reported here, an inside buffer method was developed to solve this issue. The method is based on the fact that the area over-estimated is proportional to the extent of the lit area if a fixed threshold is used to extract urban areas in a region/county. Using this method, the extents of urban areas in North China were extracted and validated by interpretations from Landsat Thematic Mapper images. The results showed that the lit areas had a significant linear relationship with the urban areas for 120 representative cities in North China in 2000, with an R2 value of over 0.95. This demonstrates that the inside buffer method can be used to extract urban areas. The validation results showed that the inside buffer model developed in 2000 can be directly used to extract the extent of urban areas using more recent night-time light imagery. This is of great value for the timely updating of urban area databases in large regions or countries.  
  Address Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, People’s Republic of China  
  Corporate Author Thesis  
  Publisher Taylor & Francis Place of Publication Editor  
  Language (up) English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1548-1603 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1352  
Permanent link to this record
 

 
Author Rowse, E.G.; Harris, S.; Jones, G. url  doi
openurl 
  Title The Switch from Low-Pressure Sodium to Light Emitting Diodes Does Not Affect Bat Activity at Street Lights Type Journal Article
  Year 2016 Publication PloS one Abbreviated Journal PLoS One  
  Volume 11 Issue 3 Pages e0150884  
  Keywords Animals; bats; England; United Kingdom; low-pressure sodium; LPS; LED; LED lighting; ecology; urban ecology; Feeding Behavior  
  Abstract We used a before-after-control-impact paired design to examine the effects of a switch from low-pressure sodium (LPS) to light emitting diode (LED) street lights on bat activity at twelve sites across southern England. LED lights produce broad spectrum 'white' light compared to LPS street lights that emit narrow spectrum, orange light. These spectral differences could influence the abundance of insects at street lights and thereby the activity of the bats that prey on them. Most of the bats flying around the LPS lights were aerial-hawking species, and the species composition of bats remained the same after the switch-over to LED. We found that the switch-over from LPS to LED street lights did not affect the activity (number of bat passes), or the proportion of passes containing feeding buzzes, of those bat species typically found in close proximity to street lights in suburban environments in Britain. This is encouraging from a conservation perspective as many existing street lights are being, or have been, switched to LED before the ecological consequences have been assessed. However, lighting of all spectra studied to date generally has a negative impact on several slow-flying bat species, and LED lights are rarely frequented by these 'light-intolerant' bat species.  
  Address School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, United Kingdom; liz.rowse(at)bristol.ac.uk  
  Corporate Author Thesis  
  Publisher PLOS Place of Publication Editor  
  Language (up) English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27008274 Approved no  
  Call Number IDA @ john @ Serial 1403  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: