toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Dominoni, D.M.; Kjellberg Jensen, J.; de Jong, M.; Visser, M.E.; Spoelstra, K. url  doi
openurl 
  Title Artificial light at night, in interaction with spring temperature, modulates timing of reproduction in a passerine bird Type Journal Article
  Year 2019 Publication Ecological Applications : a Publication of the Ecological Society of America Abbreviated Journal Ecol Appl  
  Volume Issue Pages in press  
  Keywords Animals; Parus major; Alan; light pollution; phenology; timing of reproduction; urbanization  
  Abstract The ecological impact of artificial light at night (ALAN) on phenological events such as reproductive timing is increasingly recognized. In birds, previous experiments under controlled conditions showed that ALAN strongly advances gonadal growth, but effects on egg-laying date are less clear. In particular, effects of ALAN on timing of egg-laying are found to be year-dependent, suggesting an interaction with climatic conditions such as spring temperature, which is known have strong effects on the phenology of avian breeding. Thus, we hypothesized that ALAN and temperature interact to regulate timing of reproduction in wild birds. Field studies have suggested that sources of ALAN rich in short wavelengths can lead to stronger advances in egg-laying date. We therefore tested this hypothesis in the great tit (Parus major), using a replicated experimental setup where eight previously unlit forest transects were illuminated with either white, green, or red LED light, or left dark as controls. We measured timing of egg-laying for 619 breeding events spread over six consecutive years and obtained temperature data for all sites and years. We detected overall significantly earlier egg-laying dates in the white and green light versus the dark treatment, and similar trends for red light. However, there was a strong inter-annual variability in mean egg-laying dates in all treatments, which was explained by spring temperature. We did not detect any fitness consequence of the changed timing of egg-laying due to ALAN, which suggests that advancing reproduction in response to ALAN might be adaptive.  
  Address Plant Ecology and Nature Conservation Group, Wageningen University, Wageningen, The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-0761 ISBN Medium  
  Area Expedition (up) Conference  
  Notes PMID:31863538 Approved no  
  Call Number GFZ @ kyba @ Serial 2805  
Permanent link to this record
 

 
Author Cox, D.T.C.; Sánchez de Miguel, A.; Dzurjak, S.A.; Bennie, J.; Gaston, K.J. url  doi
openurl 
  Title National Scale Spatial Variation in Artificial Light at Night Type Journal Article
  Year 2020 Publication Remote Sensing Abbreviated Journal Remote Sensing  
  Volume 12 Issue 10 Pages 1591  
  Keywords Remote Sensing; United Kingdom; National parks; skyglow; VIIRS-DNB; albedo; landcover; light emissions; light pollution; protected areas; skyglow; sky brightness; urbanization  
  Abstract The disruption to natural light regimes caused by outdoor artificial nighttime lighting has significant impacts on human health and the natural world. Artificial light at night takes two forms, light emissions and skyglow (caused by the scattering of light by water, dust and gas molecules in the atmosphere). Key to determining where the biological impacts from each form are likely to be experienced is understanding their spatial occurrence, and how this varies with other landscape factors. To examine this, we used data from the Visible Infrared Imaging Radiometer Suite (VIIRS) day/night band and the World Atlas of Artificial Night Sky Brightness, to determine covariation in (a) light emissions, and (b) skyglow, with human population density, landcover, protected areas and roads in Britain. We demonstrate that, although artificial light at night increases with human density, the amount of light per person decreases with increasing urbanization (with per capita median direct emissions three times greater in rural than urban populations, and per capita median skyglow eleven times greater). There was significant variation in artificial light at night within different landcover types, emphasizing that light pollution is not a solely urban issue. Further, half of English National Parks have higher levels of skyglow than light emissions, indicating their failure to buffer biodiversity from pressures that artificial lighting poses. The higher per capita emissions in rural than urban areas provide different challenges and opportunities for mitigating the negative human health and environmental impacts of light pollution.  
  Address Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK; d.t.c.cox(at )exeter.ac.uk  
  Corporate Author Thesis  
  Publisher MDPI Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-4292 ISBN Medium  
  Area Expedition (up) Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 2920  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: