|   | 
Details
   web
Records
Author Dominoni, D.M.; Helm, B.; Lehmann, M.; Dowse, H.B.; Partecke, J.
Title Clocks for the city: circadian differences between forest and city songbirds Type Journal Article
Year 2013 Publication Proceedings. Biological Sciences / The Royal Society Abbreviated Journal Proc Biol Sci
Volume 280 Issue 1763 Pages (down) 20130593
Keywords Animals; Circadian Clocks/*physiology; Circadian Rhythm; Cities; *Ecosystem; Light; Male; Songbirds/classification/*physiology; Trees; Urbanization; birds; chronotype; circadian rhythms; light at night; radio-telemetry; urbanization
Abstract To keep pace with progressing urbanization organisms must cope with extensive habitat change. Anthropogenic light and noise have modified differences between day and night, and may thereby interfere with circadian clocks. Urbanized species, such as birds, are known to advance their activity to early morning and night hours. We hypothesized that such modified activity patterns are reflected by properties of the endogenous circadian clock. Using automatic radio-telemetry, we tested this idea by comparing activity patterns of free-living forest and city European blackbirds (Turdus merula). We then recaptured the same individuals and recorded their activity under constant conditions. City birds started their activity earlier and had faster but less robust circadian oscillation of locomotor activity than forest conspecifics. Circadian period length predicted start of activity in the field, and this relationship was mainly explained by fast-paced and early-rising city birds. Although based on only two populations, our findings point to links between city life, chronotype and circadian phenotype in songbirds, and potentially in other organisms that colonize urban habitats, and highlight that urban environments can significantly modify biologically important rhythms in wild organisms.
Address Department of Migration and Immuno-ecology, Max Planck Institute for Ornithology, Radolfzell 78479, Germany. ddominoni@orn.mpg.de
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0962-8452 ISBN Medium
Area Expedition Conference
Notes PMID:23740778; PMCID:PMC3774226 Approved no
Call Number IDA @ john @ Serial 42
Permanent link to this record
 

 
Author Dominoni, D.M.; Partecke, J.
Title Does light pollution alter daylength? A test using light loggers on free-ranging European blackbirds (Turdus merula) Type Journal Article
Year 2015 Publication Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences Abbreviated Journal Philos Trans R Soc Lond B Biol Sci
Volume 370 Issue Pages (down) 20140118
Keywords Animals; urbanization; light pollution; artificial light at night; light loggers; daylength; photoperiod; Turdus merula; European blackbird
Abstract Artificial light at night is one of the most apparent environmental changes accompanying anthropogenic habitat change. The global increase in light pollution poses new challenges to wild species, but we still have limited understanding of the temporal and spatial pattern of exposure to light at night. In particular, it has been suggested by several studies that animals exposed to light pollution, such as songbirds, perceive a longer daylength compared with conspecifics living in natural darker areas, but direct tests of such a hypothesis are still lacking. Here, we use a combination of light loggers deployed on individual European blackbirds, as well as automated radiotelemetry,to examine whether urban birds are exposed to a longer daylength than forest counterparts. We first used activity data from forest birds to determine the level of light intensity which defines the onset and offset of daily activity in rural areas. We then used this value as threshold to calculate the subjective perceived daylength of both forest and urban blackbirds. In March, when reproductive growth occurs, urban birds were exposed on average to a 49-min longer subjective perceived daylength than forest ones, which corresponds to a 19-day difference in photoperiod at this time of the year. In the field, urban blackbirds reached reproductive maturity 19 day earlier than rural birds, suggesting that light pollution could be responsible of most of the variation in reproductive timing found between urban and rural dwellers. We conclude that light at night is the most relevant change in ambient light affecting biological rhythms in avian urban-dwellers, most likely via a modification of the perceived photoperiod.
Address Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK; davide.dominoni@glasgow.ac.uk
Corporate Author Thesis
Publisher Royal Society Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title The biological impacts of artificial light at night: from molecules to communities Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1117
Permanent link to this record
 

 
Author Hale, J.D.; Davies, G.; Fairbrass, A.J.; Matthews, T.J.; Rogers, C.D.F.; Sadler, J.P.
Title Mapping lightscapes: spatial patterning of artificial lighting in an urban landscape Type Journal Article
Year 2013 Publication PloS one Abbreviated Journal PLoS One
Volume 8 Issue 5 Pages (down) e61460
Keywords *Cities; England; Environmental Pollution; Geographic Mapping; Humans; Light; *Lighting; Photography; Urban Population; *Urbanization
Abstract Artificial lighting is strongly associated with urbanisation and is increasing in its extent, brightness and spectral range. Changes in urban lighting have both positive and negative effects on city performance, yet little is known about how its character and magnitude vary across the urban landscape. A major barrier to related research, planning and governance has been the lack of lighting data at the city extent, particularly at a fine spatial resolution. Our aims were therefore to capture such data using aerial night photography and to undertake a case study of urban lighting. We present the finest scale multi-spectral lighting dataset available for an entire city and explore how lighting metrics vary with built density and land-use. We found positive relationships between artificial lighting indicators and built density at coarse spatial scales, whilst at a local level lighting varied with land-use. Manufacturing and housing are the primary land-use zones responsible for the city's brightly lit areas, yet manufacturing sites are relatively rare within the city. Our data suggests that efforts to address light pollution should broaden their focus from residential street lighting to include security lighting within manufacturing areas.
Address School of Geography, Earth and Environmental Sciences, The University of Birmingham, Birmingham, West Midlands, United Kingdom. j.hale@bham.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:23671566; PMCID:PMC3646000 Approved no
Call Number IDA @ john @ Serial 209
Permanent link to this record
 

 
Author Perkin, E.K.; Hölker, F.; Tockner, K.; Richardson, J.S.
Title Artificial light as a disturbance to light-naïve streams Type Journal Article
Year 2014 Publication Freshwater Biology Abbreviated Journal Freshw Biol
Volume 59 Issue 11 Pages (down) 2235–2244
Keywords cutthroat trout; drift; invertebrates; light pollution; urbanization; *Fishes; Oncorhynchus clarkii; British Columbia
Abstract Summary

Artificial light at night is prevalent in human-dominated landscapes, and streams in these landscapes can be expected to be affected by artificial lights. We hypothesised that artificial light at night would reduce the activity of aquatic insects, resulting in reduced drift rates, lower fish growth rates and lower leaf litter decomposition rates.

We tested these hypotheses by installing street lights to reaches in four forested, natural streams of coastal British Columbia each paired with a control reach. Cutthroat trout (Oncorhynchus clarkii) are the top predators in these streams and feed mostly on terrestrial and drifting aquatic invertebrates.

We found that the night-time drift of aquatic invertebrates in lit reaches was ˜50% of the drift in dark reaches. However, the density of emerging aquatic insects, the density of insects falling into reaches, leaf litter decomposition rate and the number and growth rate of trout caught were not significantly different between the dark and experimentally lit reaches.

We conclude that, while short-term exposure to artificial light during the summer changes invertebrate behaviour, it does not significantly alter other trophic levels in forested headwater streams. Our results suggest that low levels of artificial light do not strongly influence stream ecosystems, but future research should determine whether this is true for all seasons and longer-term exposure to light.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0046-5070 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 361
Permanent link to this record
 

 
Author Pawson, S.M.; Bader, M.K.-F.
Title LED lighting increases the ecological impact of light pollution irrespective of color temperature Type Journal Article
Year 2014 Publication Ecological Applications Abbreviated Journal Ecological Applications
Volume 24 Issue 7 Pages (down) 1561-1568
Keywords biodiversity; high-pressure sodium lamp; light pollution; spectra; street lighting; urbanization; LED; color temperature; ecology
Abstract Recognition of the extent and magnitude of night-time light pollution impacts on natural ecosystems is increasing, with pervasive effects observed in both nocturnal and diurnal species. Municipal and industrial lighting is on the cusp of a step change where energy-efficient lighting technology is driving a shift from “yellow” high-pressure sodium vapor lamps (HPS) to new “white” light-emitting diodes (LEDs). We hypothesized that white LEDs would be more attractive and thus have greater ecological impacts than HPS due to the peak UV-green-blue visual sensitivity of nocturnal invertebrates. Our results support this hypothesis; on average LED light traps captured 48% more insects than were captured with light traps fitted with HPS lamps, and this effect was dependent on air temperature (significant light × air temperature interaction). We found no evidence that manipulating the color temperature of white LEDs would minimize the ecological impacts of the adoption of white LED lights. As such, large-scale adoption of energy-efficient white LED lighting for municipal and industrial use may exacerbate ecological impacts and potentially amplify phytosanitary pest infestations. Our findings highlight the urgent need for collaborative research between ecologists and electrical engineers to ensure that future developments in LED technology minimize their potential ecological effects.
Address Scion, P.O. Box 29-237, Fendalton, Christchurch, New Zealand
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-0761 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 367
Permanent link to this record