|   | 
Details
   web
Records
Author Abay, K.A.; Amare, M.
Title Night light intensity and women's body weight: Evidence from Nigeria Type Journal Article
Year 2018 Publication Economics and Human Biology Abbreviated Journal Econ Hum Biol
Volume 31 Issue Pages 238-248
Keywords Remote Sensing; Human Health; Adolescent; Adult; Body Mass Index; *Body Weight; Cross-Sectional Studies; Female; Health Surveys; Humans; Lighting/*statistics & numerical data; Middle Aged; Nigeria/epidemiology; Obesity/epidemiology; Overweight/*epidemiology; Prevalence; *Urbanization; Young Adult; *Bmi; *Nigeria; *Night light; *Obesity; *Overweight; *Urbanization
Abstract The prevalence of overweight and obesity are increasing in many African countries and hence becoming regional public health challenges. We employ satellite-based night light intensity data as a proxy for urbanization to investigate the relationship between urbanization and women's body weight. We use two rounds of the Demographic and Health Survey data from Nigeria. We employ both nonparametric and parametric estimation approaches that exploit both the cross-sectional and longitudinal variations in night light intensities. Our empirical analysis reveals nonlinear relationships between night light intensity and women's body weight measures. Doubling the sample's average level of night light intensity is associated with up to a ten percentage point increase in the probability of overweight. However, despite the generally positive relationship between night light intensity and women's body weight, the strength of the relationship varies across the assorted stages of night light intensity. Early stages of night light intensity are not significantly associated with women's body weight, while higher stages of nightlight intensities are associated with higher rates of overweight and obesity. Given that night lights are strong predictors of urbanization and related economic activities, our results hint at nonlinear relationships between various stages of urbanization and women's body weight.
Address International Food Policy Research Institute (IFPRI), USA. Electronic address: M.Amare@cgiar.org
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1570-677X ISBN Medium
Area Expedition Conference
Notes PMID:30312904 Approved no
Call Number GFZ @ kyba @ Serial (down) 2714
Permanent link to this record
 

 
Author Cabrera-Cruz, S.A.; Smolinsky, J.A.; McCarthy, K.P.; Buler, J.J.
Title Urban areas affect flight altitudes of nocturnally migrating birds Type Journal Article
Year 2019 Publication The Journal of Animal Ecology Abbreviated Journal J Anim Ecol
Volume in press Issue Pages
Keywords Remote Sensing; Animals; Aeroecology; bird migration; flight altitude; light pollution; radar; urbanization
Abstract 1.Urban areas affect terrestrial ecological processes and local weather, but we know little about their effect on aerial ecological processes. 2.Here, we identify urban from non-urban areas based on the intensity of artificial light at night (ALAN) in the landscape, and, along with weather covariates, evaluate the effect of urbanization on flight altitudes of nocturnally migrating birds. 3.Birds are attracted to ALAN, hence we predicted that altitudes would be lower over urban than over non-urban areas. However, other factors associated with urbanization may also affect flight altitudes. For example, surface temperature and terrain roughness are higher in urban areas, increasing air turbulence, height of the boundary layer, and affecting local winds. 4.We used data from nine weather surveillance radars in the eastern US to estimate altitudes at five quantiles of the vertical distribution of birds migrating at night over urban and non-urban areas during five consecutive spring and autumn migration seasons. We fit generalized linear mixed models by season for each of the five quantiles of bird flight altitude and their differences between urban and non-urban areas. 5.After controlling for other environmental variables and contrary to our prediction, we found that birds generally fly higher over urban areas compared to rural areas in spring, and marginally higher at the mid layers of the vertical distribution in autumn. We also identified a small interaction effect between urbanization and crosswind speed, and between urbanization and surface air temperature, on flight altitudes. We also found that the difference in flight altitudes of nocturnally migrating birds between urban and non-urban areas varied among radars and seasons, but were consistently higher over urban areas throughout the years sampled. 6.Our results suggest that the effects of urbanization on wildlife extend into the aerosphere, and are complex, stressing the need of understanding the influence of anthropogenic factors on airspace habitat. This article is protected by copyright. All rights reserved.
Address Department of Entomology and Wildlife Ecology, University of Delaware, Delaware, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8790 ISBN Medium
Area Expedition Conference
Notes PMID:31330569 Approved no
Call Number GFZ @ kyba @ Serial (down) 2604
Permanent link to this record
 

 
Author Clewley, G.D.; Plummer, K.E.; Robinson, R.A.; Simm, C.H.; Toms, M.P.
Title The effect of artificial lighting on the arrival time of birds using garden feeding stations in winter: A missed opportunity? Type Journal Article
Year 2015 Publication Urban Ecosystems Abbreviated Journal Urban Ecosystems
Volume 19 Issue 2 Pages 535–546
Keywords Animals; Artificial light; Citizen science; Foraging; Garden birds; Supplementary feeding; Urbanization
Abstract The proliferation of artificial lighting at night is one of the key anthropogenic changes associated with urbanised areas as well as some non-urban areas. Disruption to natural light/dark regimes can have considerable effects on the timing of different behaviours of birds, particularly during the breeding season. However, the effect of artificial lights on the timing of behaviours during winter has received relatively little attention, despite the fact that time partitioning of foraging can have implications for avian winter survival. In this study, we assess at a landscape scale during winter, whether birds arrive at feeding stations earlier in areas with increased levels of artificial lighting using data from a citizen science project. Arrival times of the ten most commonly recorded species were associated with a combination of the density of artificial lights, temperature, rainfall and urban land cover. We found no evidence that birds advance the onset of foraging in gardens with more artificial lights nearby; contrary to our prediction, birds generally arrived later into these areas. This is possibly a response to differences in food availability or predation risk in areas with more artificial lights. We conclude that artificial light at night may not be as important for driving the timing of foraging behaviour in winter as previously thought, but it remains to be seen whether this represents a missed opportunity to extend the foraging period or an adaptive response.
Address British Trust for Ornithology, The Nunnery, Thetford, Norfolk, IP24 2PU, UK; gary.clewley(at)bto.org
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1083-8155 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial (down) 1316
Permanent link to this record
 

 
Author Dominoni, D.M.; Partecke, J.
Title Does light pollution alter daylength? A test using light loggers on free-ranging European blackbirds (Turdus merula) Type Journal Article
Year 2015 Publication Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences Abbreviated Journal Philos Trans R Soc Lond B Biol Sci
Volume 370 Issue Pages 20140118
Keywords Animals; urbanization; light pollution; artificial light at night; light loggers; daylength; photoperiod; Turdus merula; European blackbird
Abstract Artificial light at night is one of the most apparent environmental changes accompanying anthropogenic habitat change. The global increase in light pollution poses new challenges to wild species, but we still have limited understanding of the temporal and spatial pattern of exposure to light at night. In particular, it has been suggested by several studies that animals exposed to light pollution, such as songbirds, perceive a longer daylength compared with conspecifics living in natural darker areas, but direct tests of such a hypothesis are still lacking. Here, we use a combination of light loggers deployed on individual European blackbirds, as well as automated radiotelemetry,to examine whether urban birds are exposed to a longer daylength than forest counterparts. We first used activity data from forest birds to determine the level of light intensity which defines the onset and offset of daily activity in rural areas. We then used this value as threshold to calculate the subjective perceived daylength of both forest and urban blackbirds. In March, when reproductive growth occurs, urban birds were exposed on average to a 49-min longer subjective perceived daylength than forest ones, which corresponds to a 19-day difference in photoperiod at this time of the year. In the field, urban blackbirds reached reproductive maturity 19 day earlier than rural birds, suggesting that light pollution could be responsible of most of the variation in reproductive timing found between urban and rural dwellers. We conclude that light at night is the most relevant change in ambient light affecting biological rhythms in avian urban-dwellers, most likely via a modification of the perceived photoperiod.
Address Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK; davide.dominoni@glasgow.ac.uk
Corporate Author Thesis
Publisher Royal Society Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title The biological impacts of artificial light at night: from molecules to communities Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial (down) 1117
Permanent link to this record
 

 
Author Hale, J.D.; Fairbrass, A.J.; Matthews, T.J.; Davies, G.; Sadler, J.P.
Title The ecological impact of city lighting scenarios: exploring gap crossing thresholds for urban bats Type Journal Article
Year 2015 Publication Global Change Biology Abbreviated Journal Glob Chang Biol
Volume Issue Pages
Keywords Animals; Connectivity; Lighting; Movement; Pipistrellus pipistrellus; Scenarios; Urban; Urbanization; gap crossing
Abstract As the global population urbanises, dramatic changes are expected in city lighting and the urban form, which may threaten the functioning of urban ecosystems and the services they deliver. However, little is known about the ecological impact of lighting in different urban contexts. Movement is an important ecological process that can be disrupted by artificial lighting. We explored the impact of lighting on gap crossing for Pipistrellus pipistrellus, a species of bat (Chiroptera) common within UK cities. We aimed to determine whether the probability of crossing gaps in tree cover varied with crossing distance and lighting level, through stratified field surveys. We then used the resulting data on barrier thresholds to model the landscape resistance due to lighting across an entire city and explored the potential impact of scenarios for future changes to street lighting. The level of illumination required to create a barrier effect reduced as crossing distance increased. For those gaps where crossing was recorded, bats selected the darker parts of gaps. Heavily built parts of the case study city were associated with large and brightly lit gaps, and spatial models indicate movement would be highly restricted in these areas. Under a scenario for brighter street lighting, the area of accessible land-cover was further reduced in heavily built parts of the city. We believe that this is the first study to demonstrate how lighting may create resistance to species movement throughout an entire city. That connectivity in urban areas is being disrupted for a relatively common species raises questions about the impacts on less tolerant groups and the resilience of bat communities in urban centres. However, this mechanistic approach raises the possibility that some ecological function could be restored in these areas through the strategic dimming of lighting and narrowing of gaps. This article is protected by copyright. All rights reserved.
Address School of Geography, Earth and Environmental Sciences, The University of Birmingham, Birmingham, West Midlands, United Kingdom
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1354-1013 ISBN Medium
Area Expedition Conference
Notes PMID:25644403 Approved no
Call Number LoNNe @ christopher.kyba @ Serial (down) 1100
Permanent link to this record