|   | 
Details
   web
Records
Author Dominoni, D.M.; Partecke, J.
Title Does light pollution alter daylength? A test using light loggers on free-ranging European blackbirds (Turdus merula) Type Journal Article
Year 2015 Publication Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences Abbreviated Journal Philos Trans R Soc Lond B Biol Sci
Volume 370 Issue Pages 20140118
Keywords Animals; urbanization; light pollution; artificial light at night; light loggers; daylength; photoperiod; Turdus merula; European blackbird
Abstract Artificial light at night is one of the most apparent environmental changes accompanying anthropogenic habitat change. The global increase in light pollution poses new challenges to wild species, but we still have limited understanding of the temporal and spatial pattern of exposure to light at night. In particular, it has been suggested by several studies that animals exposed to light pollution, such as songbirds, perceive a longer daylength compared with conspecifics living in natural darker areas, but direct tests of such a hypothesis are still lacking. Here, we use a combination of light loggers deployed on individual European blackbirds, as well as automated radiotelemetry,to examine whether urban birds are exposed to a longer daylength than forest counterparts. We first used activity data from forest birds to determine the level of light intensity which defines the onset and offset of daily activity in rural areas. We then used this value as threshold to calculate the subjective perceived daylength of both forest and urban blackbirds. In March, when reproductive growth occurs, urban birds were exposed on average to a 49-min longer subjective perceived daylength than forest ones, which corresponds to a 19-day difference in photoperiod at this time of the year. In the field, urban blackbirds reached reproductive maturity 19 day earlier than rural birds, suggesting that light pollution could be responsible of most of the variation in reproductive timing found between urban and rural dwellers. We conclude that light at night is the most relevant change in ambient light affecting biological rhythms in avian urban-dwellers, most likely via a modification of the perceived photoperiod.
Address Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK; davide.dominoni@glasgow.ac.uk
Corporate Author Thesis
Publisher Royal Society Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title (down) The biological impacts of artificial light at night: from molecules to communities Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1117
Permanent link to this record
 

 
Author Perkin, E.K.; Hölker, F.; Richardson, J.S.; Sadler, J.P.; Wolter, C.; Tockner, K.
Title The influence of artificial light on stream and riparian ecosystems: questions, challenges, and perspectives Type Journal Article
Year 2011 Publication Ecosphere Abbreviated Journal Ecosphere
Volume 2 Issue 11 Pages art122
Keywords aquatic invertebrates; artificial illumination; ecosystems; fish; multiple stressors; riparian; streams; urbanization
Abstract Artificial light at night is gaining attention for its potential to alter ecosystems. Although terrestrial ecologists have observed that artificial light at night may disrupt migrations, feeding, and other important ecological functions, we know comparatively little about the role artificial light might play in disrupting freshwater and riparian ecosystems. We identify and discuss four future research domains that artificial light may influence in freshwater and associated terrestrial ecosystems, with an emphasis on running waters: (1) dispersal, (2) population genetics and evolution, (3) ecosystem functioning, and (4) potential interactions with other stressors. We suggest that future experimental and modeling studies should focus on the effects of different spectral emissions by different light sources on freshwater organisms, the spatial and temporal scale over which artificial light acts, and the magnitude of change in light at night across the landscape relative to the distribution of running and standing waters. Improved knowledge about the effects of artificial light on freshwater ecosystems will inform policy decisions about changes to artificial light spectral emissions and distributions.

Read More: http://www.esajournals.org/doi/abs/10.1890/ES11-00241.1
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title (down) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2150-8925 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 24
Permanent link to this record
 

 
Author Dominoni, D.M.; Helm, B.; Lehmann, M.; Dowse, H.B.; Partecke, J.
Title Clocks for the city: circadian differences between forest and city songbirds Type Journal Article
Year 2013 Publication Proceedings. Biological Sciences / The Royal Society Abbreviated Journal Proc Biol Sci
Volume 280 Issue 1763 Pages 20130593
Keywords Animals; Circadian Clocks/*physiology; Circadian Rhythm; Cities; *Ecosystem; Light; Male; Songbirds/classification/*physiology; Trees; Urbanization; birds; chronotype; circadian rhythms; light at night; radio-telemetry; urbanization
Abstract To keep pace with progressing urbanization organisms must cope with extensive habitat change. Anthropogenic light and noise have modified differences between day and night, and may thereby interfere with circadian clocks. Urbanized species, such as birds, are known to advance their activity to early morning and night hours. We hypothesized that such modified activity patterns are reflected by properties of the endogenous circadian clock. Using automatic radio-telemetry, we tested this idea by comparing activity patterns of free-living forest and city European blackbirds (Turdus merula). We then recaptured the same individuals and recorded their activity under constant conditions. City birds started their activity earlier and had faster but less robust circadian oscillation of locomotor activity than forest conspecifics. Circadian period length predicted start of activity in the field, and this relationship was mainly explained by fast-paced and early-rising city birds. Although based on only two populations, our findings point to links between city life, chronotype and circadian phenotype in songbirds, and potentially in other organisms that colonize urban habitats, and highlight that urban environments can significantly modify biologically important rhythms in wild organisms.
Address Department of Migration and Immuno-ecology, Max Planck Institute for Ornithology, Radolfzell 78479, Germany. ddominoni@orn.mpg.de
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title (down) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0962-8452 ISBN Medium
Area Expedition Conference
Notes PMID:23740778; PMCID:PMC3774226 Approved no
Call Number IDA @ john @ Serial 42
Permanent link to this record
 

 
Author Hale, J.D.; Davies, G.; Fairbrass, A.J.; Matthews, T.J.; Rogers, C.D.F.; Sadler, J.P.
Title Mapping lightscapes: spatial patterning of artificial lighting in an urban landscape Type Journal Article
Year 2013 Publication PloS one Abbreviated Journal PLoS One
Volume 8 Issue 5 Pages e61460
Keywords *Cities; England; Environmental Pollution; Geographic Mapping; Humans; Light; *Lighting; Photography; Urban Population; *Urbanization
Abstract Artificial lighting is strongly associated with urbanisation and is increasing in its extent, brightness and spectral range. Changes in urban lighting have both positive and negative effects on city performance, yet little is known about how its character and magnitude vary across the urban landscape. A major barrier to related research, planning and governance has been the lack of lighting data at the city extent, particularly at a fine spatial resolution. Our aims were therefore to capture such data using aerial night photography and to undertake a case study of urban lighting. We present the finest scale multi-spectral lighting dataset available for an entire city and explore how lighting metrics vary with built density and land-use. We found positive relationships between artificial lighting indicators and built density at coarse spatial scales, whilst at a local level lighting varied with land-use. Manufacturing and housing are the primary land-use zones responsible for the city's brightly lit areas, yet manufacturing sites are relatively rare within the city. Our data suggests that efforts to address light pollution should broaden their focus from residential street lighting to include security lighting within manufacturing areas.
Address School of Geography, Earth and Environmental Sciences, The University of Birmingham, Birmingham, West Midlands, United Kingdom. j.hale@bham.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title (down) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:23671566; PMCID:PMC3646000 Approved no
Call Number IDA @ john @ Serial 209
Permanent link to this record
 

 
Author Ma, T.; Zhou, C.; Pei, T.; Haynie, S.; Fan, J.
Title Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: A comparative case study from China's cities Type Journal Article
Year 2012 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment
Volume 124 Issue Pages 99-107
Keywords Urbanization; DMSP-OLS; Nighttime light; Statistical analysis; China; remote sensing; satellite; light at night
Abstract Urbanization process involving increased population size, spatially extended land cover and intensified economic activity plays a substantial role in anthropogenic environment changes. Remotely sensed nighttime lights datasets derived from the Defense Meteorological Satellite Program's Operational Linescan System (DMSP/OLS) provide a consistent measure for characterizing trends in urban sprawl over time (Sutton, 2003). The utility of DMSP/OLS imagery for monitoring dynamics in human settlement and economic activity at regional to global scales has been widely verified in previous studies through statistical correlations between nighttime light brightness and demographic and economic variables ( and ). The quantitative relationship between long-term nighttime light signals and urbanization variables, required for extensive application of DMSP/OLS data for estimating and projecting the trajectory of urban development, however, are not well addressed for individual cities at a local scale. We here present analysis results concerning quantitative responses of stable nighttime lights derived from time series of DMSP/OLS imagery to changes in urbanization variables during 1994–2009 for more than 200 prefectural-level cities and municipalities in China. To identify the best-fitting model for nighttime lights-based measurement of urbanization processes with different development patterns, we comparatively use three regression models: linear, power-law and exponential functions to quantify the long-term relationships between nighttime weighted light area and four urbanization variables: population, gross domestic product (GDP), built-up area and electric power consumption. Our results suggest that nighttime light brightness could be an explanatory indicator for estimating urbanization dynamics at the city level. Various quantitative relationships between urban nighttime lights and urbanization variables may indicate diverse responses of DMSP/OLS nighttime light signals to anthropogenic dynamics in urbanization process in terms of demographic and economic variables. At the city level, growth in weighted lit area may take either a linear, concave (exponential) or convex (power law) form responsive to expanding human population and economic activities during urbanization. Therefore, in practice, quantitative models for using DMSP/OLS data to estimate urbanization dynamics should vary with different patterns of urban development, particularly for cities experiencing rapid urban growth at a local scale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title (down) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-4257 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 219
Permanent link to this record