|   | 
Details
   web
Records
Author Takemura, Y.; Ito, M.; Shimizu, Y.; Okano, K.; Okano, T.
Title Adaptive light: a lighting control method aligned with dark adaptation of human vision Type Journal Article
Year 2020 Publication Scientific Reports Abbreviated Journal (down) Sci Rep
Volume 10 Issue 1 Pages 11204
Keywords Human Health; Vision; Lighting
Abstract Light exposure before sleep causes a reduction in the quality and duration of sleep. In order to reduce these detrimental effects of light exposure, it is important to dim the light. However, dimming the light often causes inconvenience and can lower the quality of life (QOL). We therefore aimed to develop a lighting control method for use before going to bed, in which the illuminance of lights can be ramped down with less of a subjective feeling of changes in illuminance. We performed seven experiments in a double-blind, randomized crossover design. In each experiment, we compared two lighting conditions. We examined constant illuminance, linear dimming, and three monophasic and three biphasic exponential dimming, to explore the fast and slow increases in visibility that reflect the dark adaptation of cone and rod photoreceptors in the retina, respectively. Finally, we developed a biphasic exponential dimming method termed Adaptive Light 1.0. Adaptive Light 1.0 significantly prevented the misidentification seen in constant light and effectively suppressed perceptions of the illuminance change. This novel lighting method will help to develop new intelligent lighting instruments that reduce the negative effect of light on sleep and also lower energy consumption.
Address The Smart Life Science Institute, ACROSS, Waseda University, Tokyo, Japan. okano@waseda.jp
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:32641723; PMCID:PMC7343865 Approved no
Call Number GFZ @ kyba @ Serial 3050
Permanent link to this record
 

 
Author Dias, K.S.; Dosso, E.S.; Hall, A.S.; Schuch, A.P.; Tozetti, A.M.
Title Ecological light pollution affects anuran calling season, daily calling period, and sensitivity to light in natural Brazilian wetlands Type Journal Article
Year 2019 Publication The Science of Nature Abbreviated Journal (down) Sci Nat
Volume 106 Issue 7-8 Pages 46
Keywords Animals
Abstract Ecological light pollution alters an environment's light cycle, potentially affecting photoperiod-controlled behavior. Anurans, for example, generally breed nocturnally, and the influence of light pollution on their natural history may therefore be especially strong. In this study, we tested this hypothesis by measuring male calling behavior of anuran communities in natural wetlands in southern Brazil exposed or not exposed to street lights. We recorded seasonal and diel calling activity and calling response to a light pulse. The peak calling season differed between continuously lit and unlit locations with most species in illuminated wetlands shortening their calling season and calling earlier in the year. In unlit breeding sites, Boana pulchella, Pseudis minuta, and Pseudopaludicola falcipes confined their calling activity to well-defined hours of the night, but in continuously lit areas, these species called more continuously through the night. A 2-minute light pulse inhibited calling, but only in unlit wetlands. After a light pulse, frogs quickly resumed calling-suggesting acclimatization to brief artificial light exposure. Our field experiment presents a convincing example of ecological light pollution showing that artificial light alters the seasonal and diel calling time of some South American wetland anurans. It also documents their acclimatization to brief lighting when being continuously exposed to light.
Address Laboratorio de Ecologia de Vertebrados Terrestres, Universidade do Vale do Rio dos Sinos – UNISINOS, Campus Sao Leopoldo, Rio Grande, Rio Grande do Sul, 93020-190, Brazil
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-1042 ISBN Medium
Area Expedition Conference
Notes PMID:31280391 Approved no
Call Number GFZ @ kyba @ Serial 2560
Permanent link to this record
 

 
Author Stone, T.
Title The Value of Darkness: A Moral Framework for Urban Nighttime Lighting Type Journal Article
Year 2018 Publication Science and Engineering Ethics Abbreviated Journal (down) Sci Eng Ethics
Volume 24 Issue 2 Pages 607-628
Keywords Darkness; Society
Abstract The adverse effects of artificial nighttime lighting, known as light pollution, are emerging as an important environmental issue. To address these effects, current scientific research focuses mainly on identifying what is bad or undesirable about certain types and uses of lighting at night. This paper adopts a value-sensitive approach, focusing instead on what is good about darkness at night. In doing so, it offers a first comprehensive analysis of the environmental value of darkness at night from within applied ethics. A design for values orientation is utilized to conceptualize, define, and categorize the ways in which value is derived from darkness. Nine values are identified and categorized via their type of good, temporal outlook, and spatial characteristics. Furthermore, these nine values are translated into prima facie moral obligations that should be incorporated into future design choices, policy-making, and innovations to nighttime lighting. Thus, the value of darkness is analyzed with the practical goal of informing future decision-making about urban nighttime lighting.
Address Ethics and Philosophy of Technology Section, Delft University of Technology, Jaffalaan 5, 2628 BX, Delft, The Netherlands. t.w.stone@tudelft.nl
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1353-3452 ISBN Medium
Area Expedition Conference
Notes PMID:28597220; PMCID:PMC5876417 Approved no
Call Number GFZ @ kyba @ Serial 2225
Permanent link to this record
 

 
Author Stone, T.; Santoni de Sio, F.; Vermaas, P.E.
Title Driving in the Dark: Designing Autonomous Vehicles for Reducing Light Pollution Type Journal Article
Year 2019 Publication Science and Engineering Ethics Abbreviated Journal (down) Sci Eng Ethics
Volume Issue Pages 1-17
Keywords Society; Darkness; Planning; Public Safety; Design for values
Abstract This paper proposes that autonomous vehicles should be designed to reduce light pollution. In support of this specific proposal, a moral assessment of autonomous vehicles more comprehensive than the dilemmatic life-and-death questions of trolley problem-style situations is presented. The paper therefore consists of two interrelated arguments. The first is that autonomous vehicles are currently still a technology in development, and not one that has acquired its definitive shape, meaning the design of both the vehicles and the surrounding infrastructure is open-ended. Design for values is utilized to articulate a path forward, by which engineering ethics should strive to incorporate values into a technology during its development phase. Second, it is argued that nighttime lighting-a critical supporting infrastructure-should be a prima facie consideration for autonomous vehicles during their development phase. It is shown that a reduction in light pollution, and more boldly a better balance of lighting and darkness, can be achieved via the design of future autonomous vehicles. Two case studies are examined (parking lots and highways) through which autonomous vehicles may be designed for “driving in the dark.” Nighttime lighting issues are thus inserted into a broader ethics of autonomous vehicles, while simultaneously introducing questions of autonomous vehicles into debates about light pollution.
Address Department Ethics/Philosophy of Technology, Delft University of Technology, Delft, Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1353-3452 ISBN Medium
Area Expedition Conference
Notes PMID:30903370 Approved no
Call Number GFZ @ kyba @ Serial 2277
Permanent link to this record
 

 
Author Falchetta, G.; Pachauri, S.; Parkinson, S.; Byers, E.
Title A high-resolution gridded dataset to assess electrification in sub-Saharan Africa Type Journal Article
Year 2019 Publication Scientific Data Abbreviated Journal (down) Sci Data
Volume 6 Issue 1 Pages 110
Keywords Remote Sensing
Abstract Spatially explicit data on electricity access and use are essential for effective policy-making and infrastructure planning in low-income, data-scarce regions. We present and validate a 1-km resolution electricity access dataset covering sub-Saharan Africa built on gridded nighttime light, population, and land cover data. Using light radiance probability distributions, we define electricity consumption tiers for urban and rural areas and estimate the by-tier split of consumers living in electrified areas. The approach provides new insight into the spatial distribution and temporal evolution of electricity access, and a measure of its quality beyond binary access. We find our estimates to be broadly consistent with recently published province- and national-level statistics. Moreover, we demonstrate consistency between the estimated electricity access quality indicators and survey-based consumption levels defined in accordance with the World Bank Multi-Tier Framework. The dataset is readily reproduced and updated using an open-access scientific computing framework. The data and approach can be applied for improving the assessment of least-cost electrification options, and examining links between electricity access and other sustainable development objectives.
Address Energy Program, International Institute for Applied Systems Analysis (IIASA), Schossplatz 1, 2361, Laxenburg, Austria
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2052-4463 ISBN Medium
Area Expedition Conference
Notes PMID:31270329; PMCID:PMC6610126 Approved no
Call Number GFZ @ kyba @ Serial 2559
Permanent link to this record