toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Chang, Y.; Wang, S.; Zhou, Y.; Wang, L.; Wang, F. url  doi
openurl 
  Title A Novel Method of Evaluating Highway Traffic Prosperity Based on Nighttime Light Remote Sensing Type Journal Article
  Year 2020 Publication Remote Sensing Abbreviated Journal (down) Remote Sensing  
  Volume 12 Issue 1 Pages 102  
  Keywords Remote Sensing  
  Abstract As the backbone and arteries of a comprehensive transportation network, highways play an important role in improving people’s living standards and promoting economic growth. However, globally, there is limited quantifiable data evaluating the highway traffic state, characteristics, and performance. From the 1960s to the present, remote sensing has been regarded as the most effective technology for long-term and large-scale monitoring of surface information. However, how to reflect the dynamic “flow” information of traffic with a static remote sensing image has always been a difficult problem that is hard to solve in the field. This study aims to construct a method of evaluating highway traffic prosperity using nighttime remote sensing. First, based on nighttime light data that indicate social and economic activities, a highway-oriented method was proposed to extract highway nighttime light data from 2015 annual nighttime light data of the Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite sensor (SNPP-VIIRS). Subsequently, Pearson correlation analysis was used to fit the relationship between freeway traffic flow volume and freeway nighttime light at the provincial level. The results showed that Pearson Correlation Coefficient of freeway nighttime light and freeway traffic flow volume for coach and truck are 0.905 and 0.731, respectively, which are higher than between freeway traffic flow volume for coach and truck and total nighttime light (0.593 and 0.516, respectively). A new index—Highway Nighttime Traffic Prosperity Index (HNTPI)—was proposed to evaluate highway traffic across China. The results showed that HNTPI has a strong correspondence with socio-economic parameters. The Pearson Correlation Coefficient of HNTPI and gross domestic product (GDP) per capita, consumption per capita, and population are 0.772, 0.895, and 0.968, respectively. There is a huge spatial heterogeneity in China nighttime traffic, the prosperity degree of highway traffic in developed coastal areas is obviously higher than that inland. The national general highway is the most prosperous highway at night and the national general highway nighttime prosperity of Shanghai reached 22.34%. This research provides basic data for the long-term monitoring and evaluation of regional traffic operation at night and research on the correlation between regional highway construction and the economy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-4292 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2801  
Permanent link to this record
 

 
Author Zhou, H.; Liu, L.; Lan, M.; Yang, B.; Wang, Z. url  doi
openurl 
  Title Assessing the Impact of Nightlight Gradients on Street Robbery and Burglary in Cincinnati of Ohio State, USA Type Journal Article
  Year 2019 Publication Remote Sensing Abbreviated Journal (down) Remote Sensing  
  Volume 11 Issue 17 Pages 1958  
  Keywords Remote Sensing; Public Safety; Crime  
  Abstract Previous research has recognized the importance of edges to crime. Various scholars have explored how one specific type of edges such as physical edges or social edges affect crime, but rarely investigated the importance of the composite edge effect. To address this gap, this study introduces nightlight data from the Visible Infrared Imaging Radiometer Suite sensor on the Suomi National Polar-orbiting Partnership Satellite (NPP-VIIRS) to measure composite edges. This study defines edges as nightlight gradients—the maximum change of nightlight from a pixel to its neighbors. Using nightlight gradients and other control variables at the tract level, this study applies negative binomial regression models to investigate the effects of edges on the street robbery rate and the burglary rate in Cincinnati. The Akaike Information Criterion (AIC) of models show that nightlight gradients improve the fitness of models of street robbery and burglary. Also, nightlight gradients make a positive impact on the street robbery rate whilst a negative impact on the burglary rate, both of which are statistically significant under the alpha level of 0.05. The different impacts on these two types of crimes may be explained by the nature of crimes and the in-situ characteristics, including nightlight.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-4292 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2828  
Permanent link to this record
 

 
Author Zheng, H.; Gui, Z.; Wu, H.; Song, A. url  doi
openurl 
  Title Developing Non-Negative Spatial Autoregressive Models for Better Exploring Relation Between Nighttime Light Images and Land Use Types Type Journal Article
  Year 2020 Publication Remote Sensing Abbreviated Journal (down) Remote Sensing  
  Volume 12 Issue 5 Pages 798  
  Keywords Remote Sensing  
  Abstract Exploring the relationship between nighttime light and land use is of great significance to understanding human nighttime activities and studying socioeconomic phenomena. Models have been studied to explain the relationships, but the existing studies seldom consider the spatial autocorrelation of night light data, which leads to large regression residuals and an inaccurate regression correlation between night light and land use. In this paper, two non-negative spatial autoregressive models are proposed for the spatial lag model and spatial error model, respectively, which use a spatial adjacency matrix to calculate the spatial autocorrelation effect of light in adjacent pixels on the central pixel. The application scenarios of the two models were analyzed, and the contribution of various land use types to nighttime light in different study areas are further discussed. Experiments in Berlin, Massachusetts and Shenzhen showed that the proposed methods have better correlations with the reference data compared with the non-negative least-squares method, better reflecting the luminous situation of different land use types at night. Furthermore, the proposed model and the obtained relationship between nighttime light and land use types can be utilized for other applications of nighttime light images in the population, GDP and carbon emissions for better exploring the relationship between nighttime remote sensing brightness and socioeconomic activities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-4292 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2848  
Permanent link to this record
 

 
Author Danesh Yazdi, M.; Kuang, Z.; Dimakopoulou, K.; Barratt, B.; Suel, E.; Amini, H.; Lyapustin, A.; Katsouyanni, K.; Schwartz, J. url  doi
openurl 
  Title Predicting Fine Particulate Matter (PM2.5) in the Greater London Area: An Ensemble Approach using Machine Learning Methods Type Journal Article
  Year 2020 Publication Remote Sensing Abbreviated Journal (down) Remote Sensing  
  Volume 12 Issue 6 Pages 914  
  Keywords Remote Sensing  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-4292 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2856  
Permanent link to this record
 

 
Author Ma, J.; Guo, J.; Ahmad, S.; Li, Z.; Hong, J. url  doi
openurl 
  Title Constructing a New Inter-Calibration Method for DMSP-OLS and NPP-VIIRS Nighttime Light Type Journal Article
  Year 2020 Publication Remote Sensing Abbreviated Journal (down) Remote Sensing  
  Volume 12 Issue 6 Pages 937  
  Keywords Remote Sensing  
  Abstract The anthropogenic nighttime light (NTL) data that are acquired by satellites can characterize the intensity of human activities on the ground. It has been widely used in urban development assessment, socioeconomic estimate, and other applications. However, currently, the two main sensors, Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS) and Suomi National Polar-orbiting Partnership Satellite’s Visible Infrared Imaging Radiometer Suite (NPP-VIIRS), provide inconsistent data. Hence, the application of NTL for long-term analysis is hampered. This study constructed a new inter-calibration method for DMSP-OLS and NPP-VIIRS nighttime light to solve this problem. First, NTL data were processed to obtain vicarious site across China. By comparing different candidate models, it is discovered the Biphasic Dose Response (BiDoseResp) model, which is a weighted combination of sigmoid functions, can best perform the regression between DMSP-OLS and logarithmically transformed NPP-VIIRS. The coefficient of determination of BiDoseResp model reaches 0.967. It’s residual sum of squares is 6.136×105 , which is less than 6.199×105 of Logistic function. After obtaining the BiDoseResp-calibrated VIIRS (BDRVIIRS), we smoothed it by a filter with optimal parameters to maximize the consistency. The result shows that the consistency of NTL data is greatly enhanced after calibration. In 2013, the correlation coefficient between DMSP-OLS and original NPP-VIIRS data in the China region is only 0.621, while that reaches to 0.949 after calibration. Finally, a consistent NTL dataset of China from 1992 to 2018 was produced. When compared with the existing methods, our method is applicable to the full dynamic range of DMSP-OLS. Besides, it is more suitable for country or larger scale areas. It is expected that this method can greatly facilitate the development of research that is based on the historical NTL archive.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-4292 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2860  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: