toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Winger, B.M.; Weeks, B.C.; Farnsworth, A.; Jones, A.W.; Hennen, M.; Willard, D.E. url  doi
openurl 
  Title Nocturnal flight-calling behaviour predicts vulnerability to artificial light in migratory birds Type Journal Article
  Year 2019 Publication Proceedings. Biological Sciences Abbreviated Journal (down) Proc Biol Sci  
  Volume 286 Issue 1900 Pages 20190364  
  Keywords animals  
  Abstract Understanding interactions between biota and the built environment is increasingly important as human modification of the landscape expands in extent and intensity. For migratory birds, collisions with lighted structures are a major cause of mortality, but the mechanisms behind these collisions are poorly understood. Using 40 years of collision records of passerine birds, we investigated the importance of species' behavioural ecologies in predicting rates of building collisions during nocturnal migration through Chicago, IL and Cleveland, OH, USA. We found that the use of nocturnal flight calls is an important predictor of collision risk in nocturnally migrating passerine birds. Species that produce flight calls during nocturnal migration tended to collide with buildings more than expected given their local abundance, whereas those that do not use such communication collided much less frequently. Our results suggest that a stronger attraction response to artificial light at night in species that produce flight calls may mediate these differences in collision rates. Nocturnal flight calls probably evolved to facilitate collective decision-making during navigation, but this same social behaviour may now exacerbate vulnerability to a widespread anthropogenic disturbance. Our results also suggest that social behaviour during migration may reflect poorly understood differences in navigational mechanisms across lineages of birds.  
  Address 4 Gantz Family Collections Center, The Field Museum , 1400 South Lake Shore Drive, Chicago, IL 60605 , USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-8452 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30940055 Approved no  
  Call Number GFZ @ kyba @ Serial 2287  
Permanent link to this record
 

 
Author Ulgezen, Z.N.; Kapyla, T.; Meerlo, P.; Spoelstra, K.; Visser, M.E.; Dominoni, D.M. url  doi
openurl 
  Title The preference and costs of sleeping under light at night in forest and urban great tits Type Journal Article
  Year 2019 Publication Proceedings. Biological Sciences Abbreviated Journal (down) Proc Biol Sci  
  Volume 286 Issue 1905 Pages 20190872  
  Keywords Animals  
  Abstract Artificial light at night (ALAN) is an increasing phenomenon associated with worldwide urbanization. In birds, broad-spectrum white ALAN can have disruptive effects on activity patterns, metabolism, stress response and immune function. There has been growing research on whether the use of alternative light spectra can reduce these negative effects, but surprisingly, there has been no study to determine which light spectrum birds prefer. To test such a preference, we gave urban and forest great tits (Parus major) the choice where to roost using pairwise combinations of darkness, white light or green dim light at night (1.5 lux). Birds preferred to sleep under artificial light instead of darkness, and green was preferred over white light. In a subsequent experiment, we investigated the consequence of sleeping under a particular light condition, and measured birds' daily activity levels, daily energy expenditure (DEE), oxalic acid as a biomarker for sleep debt and cognitive abilities. White light affected activity patterns more than green light. Moreover, there was an origin-dependent response to spectral composition: in urban birds, the total daily activity and night activity did not differ between white and green light, while forest birds were more active under white than green light. We also found that individuals who slept under white and green light had higher DEE. However, there were no differences in oxalic acid levels or cognitive abilities between light treatments. Thus, we argue that in naive birds that had never encountered light at night, white light might disrupt circadian rhythms more than green light. However, it is possible that the negative effects of ALAN on sleep and cognition might be observed only under intensities higher than 1.5 lux. These results suggest that reducing the intensity of light pollution as well as tuning the spectrum towards long wavelengths may considerably reduce its impact.  
  Address 5 Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow , Glasgow , UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-8452 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31213184; PMCID:PMC6599990 Approved no  
  Call Number GFZ @ kyba @ Serial 2557  
Permanent link to this record
 

 
Author Kernbach, M.E.; Newhouse, D.J.; Miller, J.M.; Hall, R.J.; Gibbons, J.; Oberstaller, J.; Selechnik, D.; Jiang, R.H.Y.; Unnasch, T.R.; Balakrishnan, C.N.; Martin, L.B. url  doi
openurl 
  Title Light pollution increases West Nile virus competence of a ubiquitous passerine reservoir species Type Journal Article
  Year 2019 Publication Proceedings. Biological Sciences Abbreviated Journal (down) Proc Biol Sci  
  Volume 286 Issue 1907 Pages 20191051  
  Keywords Animals; Human Health; anthropogenic; ecoimmunology; host competence; light pollution; reservoir host  
  Abstract Among the many anthropogenic changes that impact humans and wildlife, one of the most pervasive but least understood is light pollution. Although detrimental physiological and behavioural effects resulting from exposure to light at night are widely appreciated, the impacts of light pollution on infectious disease risk have not been studied. Here, we demonstrate that artificial light at night (ALAN) extends the infectious-to-vector period of the house sparrow (Passer domesticus), an urban-dwelling avian reservoir host of West Nile virus (WNV). Sparrows exposed to ALAN maintained transmissible viral titres for 2 days longer than controls but did not experience greater WNV-induced mortality during this window. Transcriptionally, ALAN altered the expression of gene regulatory networks including key hubs (OASL, PLBD1 and TRAP1) and effector genes known to affect WNV dissemination (SOCS). Despite mounting anti-viral immune responses earlier, transcriptomic signatures indicated that ALAN-exposed individuals probably experienced pathogen-induced damage and immunopathology, potentially due to evasion of immune effectors. A simple mathematical modelling exercise indicated that ALAN-induced increases of host infectious-to-vector period could increase WNV outbreak potential by approximately 41%. ALAN probably affects other host and vector traits relevant to transmission, and additional research is needed to advise the management of zoonotic diseases in light-polluted areas.  
  Address Center for Global Health Infectious Disease Research, University of South Florida, Tampa, FL 33620, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-8452 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31337318; PMCID:PMC6661335 Approved no  
  Call Number GFZ @ kyba @ Serial 2611  
Permanent link to this record
 

 
Author Suter, P.M. url  doi
openurl 
  Title Gedanken zu Licht und Schlaf [Thoughts about Light and Sleep] Type Journal Article
  Year 2019 Publication Praxis Abbreviated Journal (down) Praxis (Bern 1994)  
  Volume 108 Issue 2 Pages 139-143  
  Keywords Commentary; Human Health  
  Abstract Many aspects of health and disease are mainly determined by the constant change between light and darkness during a solar day. The resulting physiological rhythms correspond to the circadian rhythm, which was one of the most central drivers in the evolution of humans. However, over the last 20-30 years, these natural rhythms of the change of light and darkness are being increasingly ignored by modern societies. It is well known that these rhythms are modulators of many physiological pathways and any desynchronization or misalignment will activate different pathophysiological pathways, which contribute to the risk of chronic diseases. Light pollution by widespread illumination of our environment and the night sky and uncontrolled man-made use of any light source plays a key role in the pathogenesis of sleep disturbances. Blue light exposure in the evening from any artificial light source (especially from electronic device screens) is of special relevance in this context. In this article a few key facts concerning light, sleep and diseases are presented. We should by all means account for the effects of light and darkness and stop any further light pollution.

//

Unser Leben wird durch die sich rhythmisch abwechselnde Helligkeit und Dunkelheit während eines «Solartages» bestimmt, was die Grundlage für den zirkadianen Rhythmus darstellt. Dies war Millionen von Jahren so, und erst in den vergangenen 20–30 Jahren wird diese Rhythmik infolge einer ubiquitären Verwendung von Licht zunehmend ignoriert. Die zirkadiane Rhythmik stellt allerdings eine der zentralsten Determinanten für Gesundheit und Krankheit dar, und man weiss, dass eine Abweichung vom bzw. Desynchronisation des normalen Rhythmus ein hohes pathophysiologisches Potenzial hat und in der Pathogenese der meisten chronischen Erkrankungen eine zentrale Rolle spielt. Die exzessive Beleuchtung der Umgebung und des Nachthimmels wird als Lichtverschmutzung oder «Light Pollution» bezeichnet, die sich unter anderem auch in Schlafstörungen manifestiert. Dabei darf im Besonderen das blaue Licht aus künstlichen Lichtquellen und Bildschirmen am Abend bei der Entstehung von Schlafstörungen nicht ausser Betracht gelassen werden. In diesem Artikel werden einige Aspekte zum Thema Licht, Schlaf und Gesundheit in Erinnerung gerufen und praxisrelevante Zusammenhänge aufgezeigt. Eine Kontrolle der Lichtverschmutzung ist dringend angezeigt.
 
  Address 1 Medizinische Poliklinik, Klinik und Poliklinik fur Innere Medizin, Universitatsspital Zurich  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language German Summary Language Original Title Mach nicht zu viel <<blau>>  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1661-8157 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30722742 Approved no  
  Call Number GFZ @ kyba @ Serial 2205  
Permanent link to this record
 

 
Author Milby, T.T.; Thompson, R.B. url  doi
openurl 
  Title Sources of Artificial Light for Turkey Breeding Females Type Journal Article
  Year 1945 Publication Poultry Science Abbreviated Journal (down) Poultry Science  
  Volume 24 Issue 5 Pages 438-441  
  Keywords Animals  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0032-5791 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2428  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: