toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Russart, K.L.G.; Nelson, R.J. url  doi
openurl 
  Title Light at night as an environmental endocrine disruptor Type Journal Article
  Year 2018 Publication Physiology & Behavior Abbreviated Journal (down) Physiol Behav  
  Volume 190 Issue Pages 82-89  
  Keywords Human Health; Animals  
  Abstract Environmental endocrine disruptors (EEDs) are often consequences of human activity; however, the effects of EEDs are not limited to humans. A primary focus over the past approximately 30years has been on chemical EEDs, but the repercussions of non-chemical EEDs, such as artificial light at night (LAN), are of increasing interest. The sensitivity of the circadian system to light and the influence of circadian organization on overall physiology and behavior make the system a target for disruption with widespread effects. Indeed, there is increasing evidence for a role of LAN in human health, including disruption of circadian regulation and melatonin signaling, metabolic dysregulation, cancer risk, and disruption of other hormonally-driven systems. These effects are not limited to humans; domesticated animals as well as wildlife are also exposed to LAN, and at risk for disrupted circadian rhythms. Here, we review data that support the role of LAN as an endocrine disruptor in humans to be considered in treatments and lifestyle suggestions. We also present the effects of LAN in other animals, and discuss the potential for ecosystem-wide effects of artificial LAN. This can inform decisions in agricultural practices and urban lighting decisions to avoid unintended outcomes.  
  Address Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9384 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:28870443 Approved no  
  Call Number LoNNe @ kyba @ Serial 1719  
Permanent link to this record
 

 
Author Willis, G.L.; Freelance, C.B. url  doi
openurl 
  Title The effect of directed photic stimulation of the pineal on experimental Parkinson's disease Type Journal Article
  Year 2017 Publication Physiology & Behavior Abbreviated Journal (down) Physiol Behav  
  Volume 182 Issue Pages 1-9  
  Keywords Animals  
  Abstract The role of the circadian system in Parkinson's disease (PD) is a topic of increasing scientific interest. This has emerged from recent studies demonstrating an altered response of PD patients to treatment in relation to the phase of the light/dark cycle and from other work defining the functional significance of melanocytes in PD: a cell type that the nigro-striatal dopamine (NSD) system and circadian system both contain. The present study was undertaken to determine the sensitivity of the pineal, as the final common pathway of the circadian system, to light delivered directly to the pineal via surgical implantation of LEDs. Direct photic stimulation of the pineal altered the course of experimental PD while anatomical controls receiving stimulation of the frontal cortex exhibited a negative impact on the course of recovery of these animals. These effects were closely linked to the phase of the light/dark cycle. The present results suggest that while pineal photoreceptors are regarded as vestigial, functional photo-reactivity of the pineal remains. It is inferred that melanocytes are the active cells responsible for the observed effect since they remain functionally intact in mammalian pineal even though pineal photoreceptors are functionally inert. Although the stimuli applied in the present study may be regarded as artificial this study demonstrates that brain parenchyma remains differentially reactive to direct light exposure and presents a novel mechanism in circadian structures that needs to be explored.  
  Address The Bronowski Institute of Behavioural Neuroscience, Coliban Medical Centre, 19 Jennings Street, Kyneton, Victoria 3444, Australia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9384 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:28919247 Approved no  
  Call Number LoNNe @ kyba @ Serial 1732  
Permanent link to this record
 

 
Author Hanifin, J.P.; Lockley, S.W.; Cecil, K.; West, K.; Jablonski, M.; Warfield, B.; James, M.; Ayers, M.; Byrne, B.; Gerner, E.; Pineda, C.; Rollag, M.; Brainard, G.C. url  doi
openurl 
  Title Randomized trial of polychromatic blue-enriched light for circadian phase shifting, melatonin suppression, and alerting responses Type Journal Article
  Year 2018 Publication Physiology & Behavior Abbreviated Journal (down) Physiol Behav  
  Volume in press Issue Pages  
  Keywords Human Health  
  Abstract Wavelength comparisons have indicated that circadian phase-shifting and enhancement of subjective and EEG-correlates of alertness have a higher sensitivity to short wavelength visible light. The aim of the current study was to test whether polychromatic light enriched in the blue portion of the spectrum (17,000K) has increased efficacy for melatonin suppression, circadian phase-shifting, and alertness as compared to an equal photon density exposure to a standard white polychromatic light (4000K). Twenty healthy participants were studied in a time-free environment for 7days. The protocol included two baseline days followed by a 26-h constant routine (CR1) to assess initial circadian phase. Following CR1, participants were exposed to a full-field fluorescent light (1x10(14) photons/cm(2)/s, 4000K or 17,000K, n=10/condition) for 6.5h during the biological night. Following an 8h recovery sleep, a second 30-h CR was performed. Melatonin suppression was assessed from the difference during the light exposure and the corresponding clock time 24h earlier during CR1. Phase-shifts were calculated from the clock time difference in dim light melatonin onset time (DLMO) between CR1 and CR2. Blue-enriched light caused significantly greater suppression of melatonin than standard light ((mean+/-SD) 70.9+/-19.6% and 42.8+/-29.1%, respectively, p<0.05). There was no significant difference in the magnitude of phase delay shifts. Blue-enriched light significantly improved subjective alertness (p<0.05) but no differences were found for objective alertness. These data contribute to the optimization of the short wavelength-enriched spectra and intensities needed for circadian, neuroendocrine and neurobehavioral regulation.  
  Address Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9384 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30296404 Approved no  
  Call Number GFZ @ kyba @ Serial 2025  
Permanent link to this record
 

 
Author Studer, P.; Brucker, J.M.; Haag, C.; Van Doren, J.; Moll, G.H.; Heinrich, H.; Kratz, O. url  doi
openurl 
  Title Effects of blue- and red-enriched light on attention and sleep in typically developing adolescents Type Journal Article
  Year 2018 Publication Physiology & Behavior Abbreviated Journal (down) Physiol Behav  
  Volume 199 Issue Pages 11-19  
  Keywords Human Health  
  Abstract Differential effects of blue- and red-enriched light on attention and sleep have been primarily described in adults. In our cross-over study in typically developing adolescents (11-17years old), we found attention enhancing effects of blue- compared to red-enriched light in the morning (high intensity of ca. 1000lx, short duration: <1h) in two of three attention tasks: e.g. better performance in math tests and reduced reaction time variability in a computerized attention test. In our pilot study, actigraphy measures of sleep indicated slight benefits for red- compared to blue-enriched light in the evening: tendencies toward a lower number of phases with movement activity after sleep onset in the complete sample and shorter sleep onset latency in a subgroup with later evening exposure times. These findings point to the relevance of light concepts regarding attention and sleep in typically developing adolescents. Such concepts should be developed and tested further in attention demanding contexts (at school) and for therapeutic purposes in adolescents with impaired attention or impaired circadian rhythms.  
  Address Department of Child and Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander-Universitat Erlangen-Nurnberg (FAU), Erlangen, Germany. Electronic address: oliver.kratz@uk-erlangen.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9384 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30381244 Approved no  
  Call Number GFZ @ kyba @ Serial 2142  
Permanent link to this record
 

 
Author Kumar, P.; Sajjad, H.; Joshi, P.K.; Elvidge, C.D.; Rehman, S.; Chaudhary, B.S.; Tripathy, B.R.; Singh, J.; Pipal, G. url  doi
openurl 
  Title Modeling the luminous intensity of Beijing, China using DMSP-OLS night-time lights series data for estimating population density Type Journal Article
  Year 2018 Publication Physics and Chemistry of the Earth, Parts A/B/C Abbreviated Journal (down) Physics and Chemistry of the Earth, Parts A/B/C  
  Volume 109 Issue Pages 31-39  
  Keywords Remote Sensing  
  Abstract Various scientific researches were conducted to monitor human activities and natural phenomena with the availability of various night time satellite data such as Defense Meteorological Satellite Program (DMPS). Population growth especially in a faster growing economy like China is an important indicator for assessing socio-economic development, urban planning and environmental management. Thus, spatial distribution of population is instrumental in assessing growth and developmental activities in Beijing city of China. The satellite observation data derived from Defense Meteorological Satellite Program (DMSP) was utilized to estimate population density through the measurement of light flux with radiometric recording. The data was calibrated using C0, C1, C2 parameters before processing. Population density of Beijing city was estimated using light volume of this calibrated data. Regression analysis between urban population and light volume revealed high correlation (r2=0.89)r2=0.89). Thus, population density can effectively be estimated using light intensity. The model used for estimating urban population density can effectively be utilized for other major cities of the world.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1474-7065 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1934  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: