|   | 
Details
   web
Records
Author Vandersteen, J.; Kark, S.; Sorrell, K.; Levin, N.
Title Quantifying the Impact of Light Pollution on Sea Turtle Nesting Using Ground-Based Imagery Type Journal Article
Year 2020 Publication Remote Sensing Abbreviated Journal (down) Remote Sensing
Volume 12 Issue 11 Pages 1785
Keywords Animals; Skyglow
Abstract Remote sensing of anthropogenic light has substantial potential to quantify light pollution levels and understand its impact on a wide range of taxa. Currently, the use of space-borne night-time sensors for measuring the actual light pollution that animals experience is limited. This is because most night-time satellite imagery and space-borne sensors measure the light that is emitted or reflected upwards, rather than horizontally, which is often the light that is primarily perceived by animals. Therefore, there is an important need for developing and testing ground-based remote sensing techniques and methods. In this study, we aimed to address this gap by examining the potential of ground photography to quantify the actual light pollution perceived by animals, using sea turtles as a case study. We conducted detailed ground measurements of night-time brightness around the coast of Heron Island, a coral cay in the southern Great Barrier Reef of Australia, and an important sea turtle rookery, using a calibrated DSLR Canon camera with an 8 mm fish-eye lens. The resulting hemispheric photographs were processed using the newly developed Sky Quality Camera (SQC) software to extract brightness metrics. Furthermore, we quantified the factors determining the spatial and temporal variation in night-time brightness as a function of environmental factors (e.g., moon light, cloud cover, and land cover) and anthropogenic features (e.g., artificial light sources and built-up areas). We found that over 80% of the variation in night-time brightness was explained by the percentage of the moon illuminated, moon altitude, as well as cloud cover. Anthropogenic and geographic factors (e.g., artificial lighting and the percentage of visible sky) were especially important in explaining the remaining variation in measured brightness under moonless conditions. Night-time brightness variables, land cover, and rock presence together explained over 60% of the variation in sea turtle nest locations along the coastline of Heron Island, with more nests found in areas of lower light pollution. The methods we developed enabled us to overcome the limitations of commonly used ground/space borne remote sensing techniques, which are not well suited for measuring the light pollution to which animals are exposed. The findings of this study demonstrate the applicability of ground-based remote sensing techniques in accurately and efficiently measuring night-time brightness to enhance our understanding of ecological light pollution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2975
Permanent link to this record
 

 
Author Määttä, I.; Lessmann, C.
Title Human Lights Type Journal Article
Year 2019 Publication Remote Sensing Abbreviated Journal (down) Remote Sensing
Volume 11 Issue 19 Pages 2194
Keywords Remote Sensing
Abstract Satellite nighttime light data open new opportunities for economic research. The data are objective and suitable for the study of regions at various territorial levels. Given the lack of reliable official data, nightlights are often a proxy for economic activity, particularly in developing countries. However, the commonly used product, Stable Lights, has difficulty separating background noise from economic activity at lower levels of light intensity. The problem is rooted in the aim of separating transient light from stable lights, even though light from economic activity can also be transient. We propose an alternative filtering process that aims to identify lights emitted by human beings. We train a machine learning algorithm to learn light patterns in and outside built-up areas using Global Human Settlements Layer (GHSL) data. Based on predicted probabilities, we include lights in those places with a high likelihood of being man-made. We show that using regional light characteristics in the process increases the accuracy of predictions at the cost of introducing a mechanical spatial correlation. We create two alternative products as proxies of economic activity. Global Human Lights minimizes the bias from using regional information, while Local Human Lights maximizes accuracy. The latter shows that we can improve the detection of human-generated light, especially in Africa.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2999
Permanent link to this record
 

 
Author Cabrera-Cruz, S.A.; Cohen, E.B.; Smolinsky, J.A.; Buler, J.J.
Title Artificial Light at Night is Related to Broad-Scale Stopover Distributions of Nocturnally Migrating Landbirds along the Yucatan Peninsula, Mexico Type Journal Article
Year 2020 Publication Remote Sensing Abbreviated Journal (down) Remote Sensing
Volume 12 Issue 3 Pages 395
Keywords Animals
Abstract The distributions of birds during migratory stopovers are influenced by a hierarchy of factors. For example, in temperate regions, migrants are concentrated near areas of bright artificial light at night (ALAN) and also the coastlines of large water bodies at broad spatial scales. However, less is known about what drives broad-scale stopover distributions in the tropics. We quantified seasonal densities of nocturnally migrating landbirds during spring and fall of 2011–2015, using two weather radars on the Yucatan peninsula, Mexico (Sabancuy and Cancun). We tested the influence of environmental predictors in explaining broad-scale bird stopover densities. We predicted higher densities in areas (1) closer to the coast in the fall and farther away in spring and (2) closer to bright ALAN and with lower ALAN intensity in both seasons. We found that birds were more concentrated near the coastline in the fall and away from it in spring around Cancun but not Sabancuy. Counter to our expectations, we detected increased bird densities with increased distance from lights in spring around Sabancuy, and in both seasons around Cancun, suggesting avoidance of bright areas during those seasons. This is the first evidence of broad-scale bird avoidance of bright areas during stopover.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 3004
Permanent link to this record
 

 
Author Liu, J.; Deng, Y.; Wang, Y.; Huang, H.; Du, Q.; Ren, F.
Title Urban Nighttime Leisure Space Mapping with Nighttime Light Images and POI Data Type Journal Article
Year 2020 Publication Remote Sensing Abbreviated Journal (down) Remote Sensing
Volume 12 Issue 3 Pages 541
Keywords Remote Sensing
Abstract Urban nighttime leisure spaces (UNLSs), important urban sites of nighttime economic activity, have created enormous economic and social benefits. Both the physical features (e.g., location, shape, and area) and the social functions (e.g., commercial streets, office buildings, and entertainment venues) of UNLSs are important in UNLS mapping. However, most studies rely solely on census data or nighttime light (NTL) images to map the physical features of UNLSs, which limits UNLS mapping, and few studies perform UNLS mapping from a social function perspective. Point-of-interest (POI) data, which can reflect social activity functions, are needed. As a result, a novel methodological UNLS mapping framework, that integrates NTL images and POI data is required. Consequently, we first extracted high-NTL intensity and high-POI density areas from composite data as areas with high nightlife activity levels. Then, the POI data were analyzed to identify the social functions of leisure spaces revealing that nighttime leisure activities are not abundant in Beijing overall, the total UNLS area in Beijing is 31.08 km2, which accounts for only 0.2% of the total area of Beijing. In addition, the nightlife activities in the central urban area are more abundant than those in the suburbs. The main urban area has the largest UNLS area. Compared with the nightlife landmarks in Beijing established by the government, our results provide more details on the spatial pattern of nighttime leisure activities throughout the city. Our study aims to provide new insights into how multisource data can be leveraged for UNLS mapping to enable researchers to broaden their study scope. This investigation can also help government departments better understand the local nightlife situation to rationally formulate planning and adjustment measures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 3018
Permanent link to this record
 

 
Author Froidevaux, J.S.P.; Fialas, P.C.; Jones, G.; Pettorelli, N.; Merchant, N.
Title Catching insects while recording bats: impacts of light trapping on acoustic sampling Type Journal Article
Year 2018 Publication Remote Sensing in Ecology and Conservation Abbreviated Journal (down) Remote Sens Ecol Conserv
Volume 4 Issue 3 Pages 240-247
Keywords Animals
Abstract Collecting information on bat prey availability usually involves the use of light traps to capture moths and flies that constitute the main prey items of most insectivorous bats. However, despite the recent awareness on the adverse effects of light on bats, little is known regarding the potential impacts of light trapping on the bat sampling outcomes when passive acoustic sampling and light trapping are implemented simultaneously. Using a before–after experimental design that involved the installation of a 6 W actinic light trap 1 m away from the bat detector, we tested the predictions that (1) slow‐flying bat species will be less active when the light trap is present, while the opposite will be true for fast‐flying species; and (2) bat species richness will be lower at lit conditions compared to dark ones. Our results suggest that the use of light traps in combination with bat detectors may considerably influence the outcomes of acoustic sampling. Although the activity of fast‐flying bat species did not differ between the two treatments, we found that the activity of slow‐flying ones such as Rhinolophus ferrumequinum and Rhinolophus hipposideros decreased significantly at lit conditions. Furthermore, we recorded fewer bat species when the light trap was deployed. To overcome this issue, we strongly recommend either (1) placing light traps at a considerable distance from bat detectors; or (2) using light traps during the night that follows the bat sampling if sampling needs to be at the same position; or (3) deploying non‐attractant insect traps such as Malaise traps if Lepidoptera is not the main order targeted.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2056-3485 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number NC @ ehyde3 @ Serial 2092
Permanent link to this record