|   | 
Details
   web
Records
Author Boyce, P.R.
Title The Present and Future of Lighting Research Type Journal Article
Year 2018 Publication SDAR* Journal of Sustainable Design & Applied Research Abbreviated Journal (up)
Volume 6 Issue 1 Pages
Keywords Commentary; Lighting; Vision; Human Health
Abstract The aim of this paper is to consider where lighting research is today and what its future might be. There is little doubt that, today, lighting research is an active field. A brief review of the topics being studied reveals that they range from residual studies on visibility and visual discomfort, through attempts to identify the influence of lighting on factors beyond visibility such as mood and behaviour, to the whole new field of light and health. But activity alone is not enough to justify a future. For lighting research to have a future it is necessary for it to

be influential. To become influential, research needs to focus its attention on outcomes that matter to people and the elements of those outcomes on which lighting is known to have a major influence. Further, researchers will have to be determined to overcome the barriers to changing lighting practice. By doing this, lighting research may change the world for the better, to be an important topic, not an irrelevance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number NC @ ehyde3 @ Serial 2113
Permanent link to this record
 

 
Author Zapata, M.J.; Sullivan, S.M.P.; Gray, S.M.
Title Artificial Lighting at Night in Estuaries—Implications from Individuals to Ecosystems Type Journal Article
Year 2018 Publication Estuaries and Coasts Abbreviated Journal (up)
Volume In press Issue Pages
Keywords Animals; Ecology
Abstract Artificial lighting at night (ALAN) produced by urban, industrial, and roadway lighting, as well as other sources, has dramatically increased in recent decades, especially in coastal environments that support dense human populations. Artificial “lightscapes” are characterized by distinct spatial, temporal, and spectral patterns that can alter natural patterns of light and dark with consequences across levels of biological organization. At the individual level, ALAN can elicit a suite of physiological and behavioral responses associated with light-mediated processes such as diel activity patterns and predator-prey interactions. ALAN has also been shown to modify community composition and trophic structure, with implications for ecosystem-level processes including primary productivity, nutrient cycling, and the energetic linkages between aquatic and terrestrial systems. Here, we review the state of the science relative to the impacts of ALAN on estuaries, which is an important step in assessing the long-term sustainability of coastal regions. We first consider how multiple properties of ALAN (e.g., intensity and spectral content) influence the interaction between physiology and behavior of individual estuarine biota (drawing from studies on invertebrates, fishes, and birds). Second, we link individual- to community- and ecosystem-level responses, with a focus on the impacts of ALAN on food webs and implications for estuarine ecosystem functions. Coastal aquatic communities and ecosystems have been identified as a key priority for ALAN research, and a cohesive research framework will be critical for understanding and mitigating ecological consequences.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number NC @ ehyde3 @ Serial 2116
Permanent link to this record
 

 
Author Rea, M.; Skinner, N.; Bullough, J.
Title A Novel Barricade Warning Light System Using Wireless Communications Type Journal Article
Year 2018 Publication SAE Technical Paper 2018-01-5036 Abbreviated Journal (up)
Volume In press Issue Pages
Keywords Lighting; Safety
Abstract Workers in construction and transportation sectors are at increased risk for work-related injuries and fatalities by nearby traffic. Barricade-mounted warning lights meeting current specifications do not always provide consistent and adequate visual guidance to drivers and can contribute to glare and reduced safety. Through an implementation of sensors and wireless communications, a novel, intelligent set of warning lights and a tablet-based interface were developed. The lights modulate between 100% and 10% of maximum intensity rather than between 100% and off in order to improve visual guidance and adjust their overall intensity based on ambient conditions. The lights can be synchronized or operated in sequential flash patterns at any frequency between 1 and 4 Hz, and sequential patterns automatically update based on global positioning satellite (GPS) locations displayed in the control interface. A successful field demonstration of the system verified that its functions were viewed favorably by transportation safety personnel.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number NC @ ehyde3 @ Serial 2117
Permanent link to this record
 

 
Author Jechow, A.; Kolláth, Z.; Lerner, A.; Hänel, A.; Shashar, N.; Hölker, F.; Kyba, C.C.M.
Title Measuring Light Pollution with Fisheye Lens Imagery from A Moving Boat–A Proof of Concept Type Journal Article
Year 2017 Publication International Journal of Sustainable Lighting Abbreviated Journal (up)
Volume 19 Issue 1 Pages 15-25
Keywords Skyglow; Instrumentation
Abstract Near all-sky imaging photometry was performed from a boat on the Gulf of Aqaba to measure the night sky brightness in a coastal environment. The boat was not anchored, and therefore drifted and rocked. The camera was mounted on a tripod without any inertia/motion stabilization. A commercial digital single lens reflex (DSLR) camera and fisheye lens were used with ISO setting of 6400, with the exposure time varied between 0.5 s and 5 s. We find that despite movement of the vessel the measurements produce quantitatively comparable results apart from saturation effects. We discuss the potential and limitations of this method for mapping light pollution in marine and freshwater systems. This work represents the proof of concept that all-sky photometry with a commercial DSLR camera is a viable tool to determine light pollution in an ecological context from a moving boat.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2151
Permanent link to this record
 

 
Author Bará, S.
Title Characterizing the zenithal night sky brightness in large territories: how many samples per square kilometre are needed? Type Journal Article
Year 2017 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal (up)
Volume 473 Issue 3 Pages 4164-4173
Keywords Instrumentation; atmospheric effects; light pollution; numerical methods; photometry
Abstract A recurring question arises when trying to characterize, by means of measurements or theoretical calculations, the zenithal night sky brightness throughout a large territory: how many samples per square kilometre are needed? The optimum sampling distance should allow reconstructing, with sufficient accuracy, the continuous zenithal brightness map across the whole region, whilst at the same time avoiding unnecessary and redundant oversampling. This paper attempts to provide some tentative answers to this issue, using two complementary tools: the luminance structure function and the Nyquist–Shannon spatial sampling theorem. The analysis of several regions of the world, based on the data from the New world atlas of artificial night sky brightness, suggests that, as a rule of thumb, about one measurement per square kilometre could be sufficient for determining the zenithal night sky brightness of artificial origin at any point in a region to within ±0.1 magV arcsec–2 (in the root-mean-square sense) of its true value in the Johnson–Cousins V band. The exact reconstruction of the zenithal night sky brightness maps from samples taken at the Nyquist rate seems to be considerably more demanding.
Address 1Departamento de Física Aplicada, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Galicia, Spain; salva.bara(at)usc.es
Corporate Author Thesis
Publisher Oxford Academic Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 2164
Permanent link to this record