|   | 
Details
   web
Records
Author Aubé, M.; Franchomme-Fossé, L.; Robert-Staehler, P.; Houle, V.
Title Light pollution modeling and detection in a heterogeneous environment: toward a night time aerosol optical depth retrieval method. Type Journal Article
Year 2005 Publication Proceedings of SPIE 2005 -- Volume 5890, San Diego, California, USA. Abbreviated Journal
Volume 5890 Issue Pages
Keywords Skyglow; aerosol optical depth;  remote sensing; light pollution; artificial skyglow
Abstract (down) Tracking the Aerosol Optical Depth (AOD) is of particular importance in monitoring aerosol contributions to global radiative forcing. Until now, the two standard techniques used for retrieving AOD were; (i) sun photometry, and (ii) satellite based approaches, such as based DDV (Dense Dark Vegetation) inversion algorithms. These methods are only available for use during daylight time since they are based on direct or indirect observation of sunlight. Few attempts have been made to measure AOD behaviour at night. One such method uses spectrally ­ calibrated stars as reference targets but the number of available stars is limited. This is especially true for urban sites where artificial lighting hides most  of these stars. In this research, we  attempt  to provide an alternate method, one  which exploits artificial sky glow or light pollution. This methodology links a 3D light pollution model with in situ light pollution measurements. The basic idea is to adjust an AOD value into the model in order to fit measured light pollution. This method requires an accurate model that includes spatial heterogeneity in lighting angular geometry, in lighting spectral dependence, in ground spectral reflectance and in topography. This model, named ILLUMINA, computes 1st and 2nd order molecular and aerosol scattering, as well as aerosol absorption. These model features represent major improvements to previous light pollution models. Therefore, new possibilities for light pollution studies will arise, many of which are of particular interest to the astronomical community. In this paper we will present a first sensitive study applied to the ILLUMINA model.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kagoburian @ Serial 554
Permanent link to this record
 

 
Author Gaughan, A. E., Oda, T., Sorichetta, A., Stevens, F. R., Bondarenko, M., Bun, R., Krauser, L., Yetman, G., & Nghiem, S. V.
Title Evaluating nighttime lights and population distribution as proxies for mapping anthropogenic CO2 emission in Vietnam, Cambodia and Laos Type Journal Article
Year 2019 Publication Environmental Research Communications Abbreviated Journal
Volume 1 Issue 9 Pages 091006
Keywords Remote Sensing; greenhouse gas emissions; GHG; Asia; Vietnam; Cambodia; Laos; nighttime light
Abstract (down) Tracking spatiotemporal changes in GHG emissions is key to successful implementation of the United Nations Framework Convention on Climate Change (UNFCCC). And while emission inventories often provide a robust tool to track emission trends at the country level, subnational emission estimates are often not reported or reports vary in robustness as the estimates are often dependent on the spatial modeling approach and ancillary data used to disaggregate the emission inventories. Assessing the errors and uncertainties of the subnational emission estimates is fundamentally challenging due to the lack of physical measurements at the subnational level. To begin addressing the current performance of modeled gridded CO2 emissions, this study compares two common proxies used to disaggregate CO2 emission estimates. We use a known gridded CO2 model based on satellite-observed nighttime light (NTL) data (Open Source Data Inventory for Anthropogenic CO2, ODIAC) and a gridded population dataset driven by a set of ancillary geospatial data. We examine the association at multiple spatial scales of these two datasets for three countries in Southeast Asia: Vietnam, Cambodia and Laos and characterize the spatiotemporal similarities and differences for 2000, 2005, and 2010. We specifically highlight areas of potential uncertainty in the ODIAC model, which relies on the single use of NTL data for disaggregation of the non-point emissions estimates. Results show, over time, how a NTL-based emissions disaggregation tends to concentrate CO2 estimates in different ways than population-based estimates at the subnational level. We discuss important considerations in the disconnect between the two modeled datasets and argue that the spatial differences between data products can be useful to identify areas affected by the errors and uncertainties associated with the NTL-based downscaling in a region with uneven urbanization rates.
Address University of Louisville, Department of Geography and Geosciences, Louisville, KY, United States of America; ae.gaughan(at)louisville.edu
Corporate Author Thesis
Publisher IOP Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2727
Permanent link to this record
 

 
Author Fotios, S., Price, T
Title Road lighting and accidents: Why lighting is not the only answer Type Journal Article
Year 2017 Publication Lighting Journal Abbreviated Journal
Volume 82 Issue 5 Pages 22-26
Keywords Lighting; Public Safety
Abstract (down) Tony Price and Steve Fotios point out that while road lighting can be a significant counter measure to accidents, and that higher levels might help, the presence of road lighting does not guarantee all accidents will be avoided.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1767
Permanent link to this record
 

 
Author Li, X.T., Chen, B., Wang, H.J., Zheng, G., Yang, D., Miao, X.Y., & Xu, C.
Title Effects of urban nighttime light on the growth of Cinnamomum camphora Type Journal Article
Year 2019 Publication Ying Yong Sheng Tai Xue Bao Abbreviated Journal
Volume 30 Issue 7 Pages 2284-2290
Keywords Plants
Abstract (down) To understand the effects of urban artificial nighttime light on the growth of evergreen trees, we conducted a field investigation in a typical urban street planted with Cinnamomum camphora (a common evergreen street tree species in eastern China) in the Nanjing City, China. Along the street, trees from two types of growing locations with contrasting distances from the street lamp (just under the lamp vs. between two adjacent lamps) were selected. The growth-related plant functional traits were measured and compared. The results showed that trees grown under the lamp had a mean diameter at beast height (DBH) of 16.8 cm, current-year branch productivity (CBP) of 309.4 g·m-2, current-year leaf productivity (CLP) of 241.5 g·m-2, and leaf relative chlorophyll content (LCC) of 34.6 SPAD. Trees grown between lamps had a mean DBH of 15.5 cm, CBP of 273.4 g·m-2, CLP of 212.8 g·m-2, and LCC of 33.1 SPAD. DBH, CBP, CLP and LCC of the trees under the lamp were significantly higher than those between lamps. There was no significant difference in specific leaf area between trees from the two locations. Our results suggested that urban artificial nighttime light could promote the growth of C. camphora, and alter sunlight-determined characteristics of canopy growth vigor.

为了解常绿乔木对城市夜间灯光的生长响应,以华东地区典型常绿行道树种香樟为对象,研究南京市一条典型道路上近灯处(路灯正下方)和远灯处(两相邻路灯中间位置)生长区位的夜间光照强度差异性对香樟生长性状的影响.结果表明: 近灯处香樟的平均胸径为16.8 cm,当年生小枝总生产力为309.4 g·m-2,当年生叶片生产力为241.5 g·m-2,叶片相对叶绿素含量为34.6 SPAD.远灯处香樟的平均胸径为15.5 cm,当年生小枝总生产力为273.4 g·m-2,当年生叶片生产力为212.8 g·m-2,叶片相对叶绿素含量为33.1 SPAD.近灯处香樟的平均胸径、当年生小枝总生产力、当年生叶片生产力及叶片相对叶绿素含量均显著高于远灯处.两处树木间比叶面积没有显著差异.夜间灯光的补充照明促进了近灯处香樟的生长,并改变了树冠生长对阳光的响应特征.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Chinese Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2728
Permanent link to this record
 

 
Author Ou, J.; Liu, X.; Wang, S.; Xie, R.; Li, X.
Title Investigating the differentiated impacts of socioeconomic factors and urban forms on CO2 emissions: Empirical evidence from Chinese cities of different developmental levels Type Journal Article
Year 2019 Publication Journal of Cleaner Production Abbreviated Journal Journal of Cleaner Production
Volume 226 Issue Pages 601-614
Keywords Remote Sensing
Abstract (down) To reduce carbon dioxide (CO2) emissions attributed widely to human activities, previous studies have paid great attention to the relationships between socioeconomic development, urban forms and CO2 emissions in cities, and provided relevant emission mitigation policies through the effective urban spatial planning. However, whether and how different features of urban forms (such as compactness) affecting the levels of CO2 emissions is still debatable, specifically considering the different development levels of the cities. Therefore, this study is to synthetically explore how socioeconomic factors and urban forms work together to affect CO2 emissions with the consideration of differences in development levels of five city tiers in China. First, CO2 emissions in each city were derived from provincial energy statistics, radiance-calibrated nighttime light imageries, and population distribution data based on a disaggregating model. Then, a set of variables representing socioeconomic factors and urban forms were acquired from the city statistics and land use data, respectively. After obtaining the balanced dataset of these five city tiers from 1995 to 2015, the panel data analysis was finally applied to evaluate the consequences of socioeconomic factors and urban forms on CO2 emissions under different development stages. The estimation results show that the economic development, population growth, and urban land expansion are important factors that accelerating CO2 emissions in all the city tiers. Besides, irregular or fragmented structures of urban land use could result in more CO2 emissions due to the increase in potential transportation requirements in all the city tiers. Notably, an increasing concentrated pattern in the urban core is found to increase CO2 emissions in the tier-one cities, but to promote the reduction of CO2 emissions in other four city tiers. The urban spatial development with a compact and multiple-nuclei pattern is suggested to be closely linked with a lower level of CO2 emissions. Such results highlight the importance of a city's development level for decision-making involving the mitigation of CO2 emissions, and provide scientific support for building a low-carbon city from the perspective of both socioeconomic development and urban spatial planning.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-6526 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2325
Permanent link to this record