|   | 
Details
   web
Records
Author Todd, J.J.; Barakat, B.; Tavassoli, A.; Krauss, D.A.
Title The Moon’s Contribution to Nighttime Illuminance in Different Environments Type Journal Article
Year 2015 Publication Proceedings of the Human Factors and Ergonomics Society Annual Meeting Abbreviated Journal Proceedings of the Human Factors and Ergonomics Society Annual Meeting
Volume 59 Issue 1 Pages 1056-1060
Keywords Moonlight
Abstract (down) The moon’s contribution to illuminance was investigated in order to determine the role it may play in providing a level of illuminance suitable to perform everyday tasks in nighttime outdoor environments. The level of illuminance provided in an area void of artificial lighting was compared to illuminance in an urban environment. Moon phase affected illuminance only in the absence of urban lighting. This effect was lost when controlling for altitude and azimuth, suggesting the moon’s location in the sky has a more significant effect on illuminance than the phase of the moon. These results are discussed in relation to our current understanding and experience of navigating and operating in nighttime environments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1541-9312 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2666
Permanent link to this record
 

 
Author Haraguchi, S.; Kamata, M.; Tokita, T.; Tashiro, K.-I.; Sato, M.; Nozaki, M.; Okamoto-Katsuyama, M.; Shimizu, I.; Han, G.; Chowdhury, V.S.; Lei, X.-F.; Miyazaki, T.; Kim-Kaneyama, J.-R.; Nakamachi, T.; Matsuda, K.; Ohtaki, H.; Tokumoto, T.; Tachibana, T.; Miyazaki, A.; Tsutsui, K.
Title Light-at-night exposure affects brain development through pineal allopregnanolone-dependent mechanisms Type Journal Article
Year 2019 Publication ELife Abbreviated Journal Elife
Volume 8 Issue Pages e45306
Keywords Animals; chicken; neuroscience; Circadian disruption; pineal allopregnanolone; cell death
Abstract (down) The molecular mechanisms by which environmental light conditions affect cerebellar development are incompletely understood. We showed that circadian disruption by light-at-night induced Purkinje cell death through pineal allopregnanolone (ALLO) activity during early life in chicks. Light-at-night caused the loss of diurnal variation of pineal ALLO synthesis during early life and led to cerebellar Purkinje cell death, which was suppressed by a daily injection of ALLO. The loss of diurnal variation of pineal ALLO synthesis induced not only reduction in pituitary adenylate cyclase-activating polypeptide (PACAP), a neuroprotective hormone, but also transcriptional repression of the cerebellar Adcyap1 gene that produces PACAP, with subsequent Purkinje cell death. Taken together, pineal ALLO mediated the effect of light on early cerebellar development in chicks.
Address Department of Biology, Waseda University, Tokyo, Japan; shogo.haraguchi(at)gmail.com
Corporate Author Thesis
Publisher eLife Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-084X ISBN Medium
Area Expedition Conference
Notes PMID:31566568 Approved no
Call Number GFZ @ kyba @ Serial 2694
Permanent link to this record
 

 
Author Kolláth, Z.; Száz, D.; Tong, K.P.; Kolláth, K.
Title The Colour of the Night Sky Type Journal Article
Year 2020 Publication Journal of Imaging Abbreviated Journal J. Imaging
Volume 6 Issue 9 Pages 90
Keywords Skyglow; Natural light; Instrumentation
Abstract (down) The measurement of night sky quality has become an important task in night sky conservation. Modern measurement techniques involve mainly a calibrated digital camera or a spectroradiometer. However, panchromatic devices are still prevalent to this day, even in the absence of determining the spectral information of the night sky. In the case of multispectral measurements, colour information is currently presented in multiple ways. One of the most frequently used metrics is correlated colour temperature (CCT), which is not without its limitation for the purpose of describing especially the colour of natural night sky. Moreover, visually displaying the colour of the night sky in a quantitatively meaningful way has not attracted sufficient attention in the community of astronomy and light pollution research—most photographs of the night sky are post-processed in a way for aesthetic attractiveness rather than accurate representation of the night sky. The spectrum of the natural night sky varies in a wide range depending on solar activity and atmospheric properties. The most noticeable variation in the visible range is the variation of the atomic emission lines, primarily the green oxygen and orange sodium emission. Based on the accepted models of night sky emission, we created a random spectral database which represents the possible range of night sky radiance distribution. We used this spectral database as a learning set, to create a colour transformation between different colour spaces. The spectral sensitivity of some digital cameras is also used to determine an optimal transformation matrix from camera defined coordinates to real colours. The theoretical predictions were extended with actual spectral measurements in order to test the models and check the local constituents of night sky radiance. Here, we present an extended modelling of night sky colour and recommendations of its consistent measurement, as well as methods of visualising the colour of night sky in a consistent way, namely using the false colour enhancement.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2313-433X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 3120
Permanent link to this record
 

 
Author Kolláth, Z.; Száz, D.; Kolláth, K.; Tong, K.P.
Title Light Pollution Monitoring and Sky Colours Type Journal Article
Year 2020 Publication Journal of Imaging Abbreviated Journal J. Imaging
Volume 6 Issue 10 Pages 104
Keywords Skyglow; Instrumentation; light pollution; imaging radiometry; colorimetry
Abstract (down) The measurement of night sky quality has become an important task in nature conservation. The primary device used for this task can be a calibrated digital camera. In addition, colour information can be derived from sky photography. In this paper, we provide a test on a concept to gather information about the possible sources of night sky brightness based on digital camera images. This method helps to understand changes in night sky quality due to natural and artificial changes in the environment. We demonstrate that a well-defined colour–colour diagram can differentiate between the different natural and artificial sources of night sky radiance. The colour information can be essential when interpreting long-term evolution of light pollution measurements.
Address Department of Physics, Eötvös Loránd University (ELTE) BDPK, 9700 Szombathely, Hungary; zkollath( at ) gmail.com
Corporate Author Thesis
Publisher MDPI Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2313-433X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 3170
Permanent link to this record
 

 
Author Vaaja, M. T., Kurkela, M., Maksimainen, M., Virtanen, J., Kukko, A., Lehtola, V. V., Hyyppä, J., & Hyyppä, H.
Title MOBILE MAPPING OF NIGHT-TIME ROAD ENVIRONMENT LIGHTING CONDITIONS Type Journal Article
Year 2018 Publication The Photogrammetric Journal of Finland Abbreviated Journal
Volume 26 Issue 1 Pages
Keywords Lighting; Remote Sensing
Abstract (down) The measurement of 3D geometry for road environments is one of the main applications of mobile mapping systems (MMS). We present mobile mapping applied to a night-time road environment. We integrate the measurement of luminances into a georeferenced 3D point cloud. The luminance measurement and the 3D point cloud acquired with an MMS are used in assessing road environment lighting conditions. Luminance (cd/m2) was measured with a luminance-calibrated panoramic camera system, and point cloud was produced by laser scanners. The relative orientation between the GNSS, IMU, camera, and laser scanner sensors was solved in order to

integrate the data sets into the same coordinate system. Hence, the georeferenced luminance values are transferable into geographic information systems (GIS). The method provides promising results for future road lighting assessment. In addition, this article demonstrates the night-time mobile mapping principle applied to a road section in Helsinki, Finland. Finally, we discuss the

future applications of mobile-mapped luminance point clouds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2650
Permanent link to this record