|   | 
Details
   web
Records
Author Cabrera-Barona, P.F.; Bayón, M.; Durán, G.; Bonilla, A.; Mejía, V.
Title Generating and Mapping Amazonian Urban Regions Using a Geospatial Approach Type Journal Article
Year 2020 Publication ISPRS International Journal of Geo-Information Abbreviated Journal Ijgi
Volume 9 Issue 7 Pages 453
Keywords Remote Sensing
Abstract (up) (1) background: Urban representations of the Amazon are urgently needed in order tobetter understand the complexity of urban processes in this area of the World. So far, limited workthat represents Amazonian urban regions has been carried out. (2) methods: Our study area is theEcuadorian Amazon. We performed a K-means algorithm using six urban indicators: Urban fractaldimension, number of paved streets, urban radiant intensity (luminosity), and distances to theclosest new deforested areas, to oil pollution sources, and to mining pollution sources. We alsocarried out fieldwork to qualitatively validate our geospatial and statistical analyses. (3) results:We generated six Amazonian urban regions representing different urban configurations and processesof major cities, small cities, and emerging urban zones. The Amazonian urban regions generatedrepresent the urban systems of the Ecuadorian Amazon at a general scale, and correspond to theurban realities at a local scale. (4) conclusions: An Amazonian urban region is understood as a set ofurban zones that are dispersed and share common urban characteristics such a similar distance tooil pollution sources or similar urban radiant intensity. Our regionalization model represents thecomplexity of the Amazonian urban systems, and the applied methodology could be transferred toother Amazonian countries.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2220-9964 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 3115
Permanent link to this record
 

 
Author Lewis, A.L.
Title Visual Performance as a Function of Spectral Power Distribution of Light Sources at Luminances Used for General Outdoor Lighting Type Journal Article
Year 1999 Publication Journal of the Illuminating Engineering Society Abbreviated Journal Journal of the Illuminating Engineering Society
Volume 28 Issue 1 Pages 37-42
Keywords Vision; spectral power distribution; SPD; lighting
Abstract (up) (none)
Address Michigan College of Optometry, Ferris State University, Big Rapids, Michigan
Corporate Author Thesis
Publisher Taylor & Francis Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0099-4480 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 2223
Permanent link to this record
 

 
Author Acuto, M.
Title We need a science of the night Type Journal Article
Year 2019 Publication Nature Abbreviated Journal Nature
Volume 576 Issue 7787 Pages 339
Keywords *Policy; *Society; *Commentary
Abstract (up) (none)
Address Connected Cities Lab, University of Melbourne; michele.acuto(at)unimelb.edu.au
Corporate Author Thesis
Publisher Springer Nature Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes PMID:31853076 Approved no
Call Number IDA @ john @ Serial 2792
Permanent link to this record
 

 
Author Maggi, E.; Bongiorni, L.; Fontanini, D.; Capocchi, A.; Dal Bello, M.; Giacomelli, A.; Benedetti‐Cecchi, L.; Fox, C.
Title Artificial light at night erases positive interactions across trophic levels Type Journal Article
Year 2020 Publication Functional Ecology Abbreviated Journal Funct Ecol
Volume 34 Issue 3 Pages 694-706
Keywords Ecology; artificial light at night; coastal assemblages; cyanobacteria; epilithic biofilm; herbivores; heterotrophic bacteria; positive effects
Abstract (up) 1. Artificial light at night (ALAN) is one of the most recently recognized sources of anthropogenic disturbance, with potentially severe effects on biological systems that are still to be fully explored. Among marine ecosystems, high‐shore habitats are those more likely to be impacted by ALAN, due to a more intense exposition to outdoor nocturnal lightings (mostly from lamps along coastal streets and promenades, or within harbours, ports and marinas).

2. By performing in situ nocturnal manipulations of a direct source of white LED light and presence of herbivores in a Mediterranean high‐shore habitat, we assessed the interactive effects of light pollution and grazing on two key functional components of the epilithic microbial community (the cyanobacteria, as the main photoautotrophic component, and the other bacteria, mainly dominated by heterotrophs) developing on rocky shores.

3. Results showed an unexpected increase in the diversity of epilithic bacterial biofilm at unlit sites in the presence of grazers, that was more evident on the other (mainly heterotrophic) bacterial component, when giving weight to more abundant families. This effect was likely related to the mechanical removal of dead cells through the grazing activity of consumers. ALAN significantly modified this scenario, by reducing the density of grazers and thus erasing their effects on bacteria, and by increasing the diversity of more abundant cyanobacterial families.

4. Overall, direct and indirect effects on ALAN resulted in a significant increase in the diversity of the photoautotrophic component and a decrease in the heterotrophic one, likely affecting key ecosystem functions acting on rocky shore habitats.

5. ALAN may represent a threat for natural systems through the annihilation of positive interactions across trophic levels, potentially impairing the relationship between biodiversity and functioning of ecosystems and interacting with other global and local stressors currently impinging on coastal areas.
Address Dip. di Biologia, CoNISMa, Università di Pisa, Pisa, Italy; elena.maggi ( at ) unipi.it
Corporate Author Thesis
Publisher British Ecological Society Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0269-8463 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 3307
Permanent link to this record
 

 
Author Minnaar, C.; Boyles, J.G.; Minnaar, I.A.; Sole, C.L.; McKechnie, A.E.; McKenzie, A.
Title Stacking the odds: light pollution may shift the balance in an ancient predator-prey arms race Type Journal Article
Year 2014 Publication Journal of Applied Ecology Abbreviated Journal J Appl Ecol
Volume 52 Issue 2 Pages 522-531
Keywords Ecology; animals; bats; insects; predation; Neoromicia capensis; moths; Cape serotine bat; co-evolution; eared moth; Lepidoptera; predator–prey interactions; prey selection
Abstract (up) 1. Artificial night lighting threatens to disrupt strongly conserved light-dependent processes in animals and may have cascading effects on ecosystems as species interactions become altered. Insectivorous bats and their prey have been involved in a nocturnal, co-evolutionary arms race for millions of years. Lights may interfere with anti-bat defensive behaviours in moths, and disrupt a complex and globally ubiquitous interaction between bats and insects, ultimately leading to detrimental consequences for ecosystems on a global scale.

2. We combined experimental and mathematical approaches to determine effects of light pollution on a free-living bat–insect community. We compared prey selection by Cape serotine bats Neoromicia capensis in naturally unlit and artificially lit conditions using a manipulative field experiment, and developed a probabilistic model based on a suite of prey-selection factors to explain differences in observed diet.

3.Moth consumption by N. capensis was low under unlit conditions (mean percentage volume ± SD: 5·91 ± 6·25%), while moth consumption increased sixfold (mean percentage volume ± SD: 35·42 ± 17·90%) under lit conditions despite a decrease in relative moth abundance. Predictive prey-selection models that included high-efficacy estimates for eared-moth defensive behaviour found most support given diet data for bats in unlit conditions. Conversely, models that estimated eared-moth defensive behaviour as absent or low found more support given diet data for bats in lit conditions. Our models therefore suggest the increase in moth consumption was a result of light-induced, decreased eared-moth defensive behaviour.

4. Policy implications. In the current context of unyielding growth in global light pollution, we predict that specialist moth-eating bats and eared moths will face ever-increasing challenges to survival through increased resource competition and predation risk, respectively. Lights should be developed to be less attractive to moths, with the goal of reducing effects on moth behaviour. Unfortunately, market preference for broad-spectrum lighting and possible effects on other taxa make development of moth-friendly lighting improbable. Mitigation should therefore focus on the reduction of temporal, spatial and luminance redundancy in outdoor lighting. Restriction of light inside nature reserves and urban greenbelts can help maintain dark refugia for moth-eating bats and moths, and may become important for their persistence.
Address Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Hatfield, South Africa
Corporate Author Thesis
Publisher Wiley Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8901 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ christopher.kyba @; IDA @ john @ Serial 1085
Permanent link to this record