toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Duriscoe, D.M. url  openurl
  Title Measuring Anthropogenic Sky Glow Using a Natural Sky Brightness Model. Type Journal Article
  Year 2013 Publication Publications of the Astronomical Society of the Pacific Abbreviated Journal  
  Volume 125 Issue 933 Pages 1370-1382  
  Keywords Skyglow  
  Abstract (up) Anthropogenic sky glow (a result of light pollution) combines with the natural background brightness of the night sky when viewed by an observer on the earth’s surface. In order to measure the anthropogenic component accurately, the natural component must be identified and subtracted. A model of the moonless natural sky brightness in the V-band was constructed from existing data on the Zodiacal Light, an airglow model based on the van Rhijn function, and a model of integrated starlight (including diffuse galactic light) constructed from images made with the same equipment used for sky brightness observations. The model also incorporates effective extinction by the atmosphere and is improved at high zenith angles (>80°) by the addition of atmospheric diffuse light. The model may be projected onto local horizon coordinates for a given observation at a resolution of 0.05° over the hemisphere of the sky, allowing it to be accurately registered with data images obtained from any site. Zodiacal Light and integrated starlight models compare favorably with observations from remote dark sky sites, matching within ± 8 nL over 95% of the sky. The natural airglow may be only approximately modeled, errors of up to ± 25 nL are seen when the airglow is rapidly changing or has considerable character (banding); ± 8 nL precision may be expected under favorable conditions. When subtracted from all-sky brightness data images, the model significantly improves estimates of sky glow from anthropogenic sources, especially at sites that experience slight to moderate light pollution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 539  
Permanent link to this record
 

 
Author Barentine, J.C.; Kundracik, F.; Kocifaj, M.; Sanders, J.C.; Esquerdo, G.A.; Dalton, A.M.; Foott, B.; Grauer, A.; Tucker, S.; Kyba, C.C.M. url  doi
openurl 
  Title Recovering the city street lighting fraction from skyglow measurements in a large-scale municipal dimming experiment Type Journal Article
  Year 2020 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 253 Issue Pages 107120  
  Keywords Skyglow; Remote Sensing  
  Abstract (up) Anthropogenic skyglow dominates views of the natural night sky in most urban settings, and the associated emission of artificial light at night (ALAN) into the environment of cities involves a number of known and suspected negative externalities. One approach to lowering consumption of ALAN in cities is dimming or extinguishing publicly owned outdoor lighting during overnight hours; however, there are few reports in the literature about the efficacy of these programs. Here we report the results of one of the largest municipal lighting dimming experiments to date, involving ~ 20,000 roadway luminaires owned and operated by the City of Tucson, Arizona, U.S. We analyzed both single-channel and spatially resolved ground-based measurements of broadband night sky radiance obtained during the tests, determining that the zenith sky brightness during the tests decreased by ()% near the city center and ()% at an adjacent suburban location on nights when the output of the street lighting system was dimmed from 90% of its full power draw to 30% after local midnight. Modeling these changes with a radiative transfer code yields results suggesting that street lights account for about (14 ± 1)% of light emissions resulting in skyglow seen over the city. A separate derivation from first principles implies that street lighting contributes only % of light seen at the zenith over Tucson. We discuss this inconsistency and suggest routes for future work.  
  Address 3223 N 1st Ave, Tucson, AZ 85719; john(at)darksky.org  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Enlish Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2989  
Permanent link to this record
 

 
Author Yoshinaka, K.; Yamaguchi, A.; Matsumura, R.; Node, K.; Tokuda, I.; Akashi, M. url  doi
openurl 
  Title Effect of different light-dark schedules on estrous cycle in mice, and implications for mitigating the adverse impact of night work Type Journal Article
  Year 2017 Publication Genes to Cells : Devoted to Molecular & Cellular Mechanisms Abbreviated Journal Genes Cells  
  Volume 22 Issue 10 Pages 876-884  
  Keywords Animals  
  Abstract (up) Approximately 20% of workers in developed countries are involved in night work. Nevertheless, many studies have strongly suggested that night-work-induced chronic circadian misalignment increases the risk of a diverse range of health problems. Although a relation between night work and irregular menstrual cycles has been indicated epidemiologically, a direct causal link remains elusive. Here, we report that repetitive reversal of light-dark (LD) cycles triggers irregular estrous cycles in mice. The findings showed that the estrous cycle remained irregular for more than four weeks after the mice were returned to regular LD cycles. Importantly, the magnitude of the negative impact of reversed LD cycles on the estrous cycle, or more specifically the decreased number of normal estrous cycles during the observation period, was dependent on the difference in the frequency of LD reversal. Presently, no clear solution to prevent night-work-mediated menstrual abnormalities is available, and reducing night work in modern society is difficult. Our findings indicate that optimizing work schedules could significantly prevent menstrual problems without reducing total night-work time.  
  Address The Research Institute for Time Studies, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8511, Japan  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1356-9597 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:28884885 Approved no  
  Call Number LoNNe @ kyba @ Serial 1722  
Permanent link to this record
 

 
Author Manfrin, A.; Lehmann, D.; van Grunsven, R.H.A.; Larsen, S.; Syväranta, J.; Wharton, G.; Voigt, C.C.; Monaghan, M.T.; Hölker, F. url  doi
openurl 
  Title Dietary changes in predators and scavengers in a nocturnally illuminated riparian ecosystem Type Journal Article
  Year 2018 Publication Oikos Abbreviated Journal Oikos  
  Volume 127 Issue 7 Pages 960-969  
  Keywords Ecology; Animals  
  Abstract (up) Aquatic and terrestrial ecosystems are linked by fluxes of carbon and nutrients in riparian areas. Processes that alter these fluxes may therefore change the diet and composition of consumer communities. We used stable carbon isotope (δ13C) analyses to test whether the increased abundance of aquatic prey observed in a previous study led to a dietary shift in riparian consumers in areas illuminated by artificial light at night (ALAN). We measured the contribution of aquatic-derived carbon to diets in riparian arthropods in experimentally lit and unlit sites along an agricultural drainage ditch in northern Germany. The δ13C signature of the spider Pachygnatha clercki (Tetragnathidae) was 0.7‰ lower in the ALAN-illuminated site in summer, indicating a greater assimilation of aquatic prey. Bayesian mixing models also supported higher intake of aquatic prey under ALAN in summer (34% versus 21%). In contrast, isotopic signatures for P. clercki (0.3‰) and Pardosa prativaga (0.7‰) indicated a preference for terrestrial prey in the illuminated site in summer. Terrestrial prey intake increased in spring for P. clercki under ALAN (from 70% to 74%) and in spring and autumn for P. prativaga (from 68% to 77% and from 67% to 72%) and Opiliones (from 68% to 72%; 68% to 75%). This was despite most of the available prey (up to 80%) being aquatic in origin. We conclude that ALAN changed the diet of riparian secondary consumers by increasing the density of both aquatic and terrestrial prey. Dietary changes were species- and season-specific, indicating that the effects of ALAN may interact with phenology and feeding strategy. Because streetlights can occur in high density near freshwaters, ALAN may have widespread effects on aquatic-terrestrial ecosystem linkages.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0030-1299 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1811  
Permanent link to this record
 

 
Author Bolliger, J. Hennet, T., Wermelinger, B., Blum, S., Haller, J. & Obrist, M. url  doi
openurl 
  Title Low impact of two LED colors on nocturnal insect abundance and bat activity in a peri‑urban environment Type Journal Article
  Year 2020 Publication Journal of Insect Conservation Abbreviated Journal  
  Volume Issue Pages  
  Keywords Animals  
  Abstract (up) Artifcial light at night (ALAN) is an important driver of change in ecological environments of the 21th century. We investigated the impact on nocturnal insect abundance and bat activity of two LED light colors (warm-white 2700 K, cold-white

6500 K) in a peri-urban environment. Bat activity (predominantly Pipistrellus pipistrellus) was largely driven by prey availability (insects), while insect abundance was responsive to nightly weather conditions (precipitation, temperature). Thus, both insects and bats were not diferentially responsive to cold-white or warm-white LEDs. These fndings are largely in contrast with literature, particularly for insects. However, as most published experiments on ALAN were conducted in areas that were lit solely for the purpose of the experiment, we would like to bring forward that (1) adaptation to environmental constraints may play a role in peri-urban environments that have been exposed to ALAN for many decades; or (2) impacts of cold-white LEDs on nocturnal insects may be lower than expected, because nocturnal insects adapted to low-light conditions may be put of by cold white light sources (6500 K).
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2957  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: