|   | 
Details
   web
Records
Author Zielinska-Dabkowska, K.M.
Title Make lighting healthier Type Journal Article
Year 2018 Publication Nature Abbreviated Journal Nature
Volume 553 Issue 7688 Pages 274-276
Keywords Commentary; Lighting; Human Health
Abstract (up) Artificial illumination can stop us sleeping and make us ill. We need fresh strategies and technologies, argues Karolina M. Zielinska-Dabkowska.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2932
Permanent link to this record
 

 
Author van Grunsven, R.H.A.; Jahnichen, D.; Grubisic, M.; Hölker, F.
Title Slugs (Arionidae) benefit from nocturnal artificial illumination Type Journal Article
Year 2018 Publication Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology Abbreviated Journal J Exp Zool A Ecol Integr Physiol
Volume 329 Issue 8-9 Pages 429-433
Keywords Animals
Abstract (up) Artificial illumination increases around the globe and this has been found to affect many groups of organisms and ecosystems. By manipulating nocturnal illumination using one large experimental field site with 24 streetlights and one dark control, we assessed the impact of artificial illumination on slugs over a period of 4 years. The number of slugs, primarily Arionidae, increased strongly in the illuminated site but not on the dark site. There are several nonexclusive explanations for this effect, including reduced predation and increased food quality in the form of carcasses of insects attracted by the light. As slugs play an important role in ecosystems and are also important pest species, the increase of slugs under artificial illumination cannot only affect ecosystem functioning but also have important economic consequences.
Address Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2471-5638 ISBN Medium
Area Expedition Conference
Notes PMID:29761669 Approved no
Call Number GFZ @ kyba @ Serial 1913
Permanent link to this record
 

 
Author Gong, P.; Li, X.; Wang, J.; Bai, Y.; Chen, B.; Hu, T.; Liu, X.; Xu, B.; Yang, J.; Zhang, W.; Zhou, Y.
Title Annual maps of global artificial impervious area (GAIA) between 1985 and 2018 Type Journal Article
Year 2020 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment
Volume 236 Issue Pages in press
Keywords Remote Sensing
Abstract (up) Artificial impervious areas are predominant indicators of human settlements. Timely, accurate, and frequent information on artificial impervious areas is critical to understanding the process of urbanization and land use/cover change, as well as of their impacts on the environment and biodiversity. Despite their importance, there still lack annual maps of high-resolution Global Artificial Impervious Areas (GAIA) with longer than 30-year records, due to the high demand of high performance computation and the lack of effective mapping algorithms. In this paper, we mapped annual GAIA from 1985 to 2018 using the full archive of 30-m resolution Landsat images on the Google Earth Engine platform. With ancillary datasets, including the nighttime light data and the Sentinel-1 Synthetic Aperture Radar data, we improved the performance of our previously developed algorithm in arid areas. We evaluated the GAIA data for 1985, 1990, 1995, 2000, 2005, 2010, and 2015, and the mean overall accuracy is higher than 90%. A cross-product comparison indicates the GAIA data are the only dataset spanning over 30 years. The temporal trend in GAIA agrees well with other datasets at the local, regional, and global scales. Our results indicate that the GAIA reached 797,076 km2 in 2018, which is 1.5 times more than that in 1990. China and the United States (US) rank among the top two in artificial impervious area, accounting for approximately 50% of the world's total in 2018. The artificial impervious area of China surpassed that of the US in 2015. By 2018, the remaining eight among the top ten countries are India, Russia, Brazil, France, Italy, Germany, Japan, and Canada. The GAIA dataset can be freely downloaded from http://data.ess.tsinghua.edu.cn.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-4257 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2756
Permanent link to this record
 

 
Author Flores, D.E.F.L.; Oda, G.A.
Title Novel Light/Dark Regimens with Minimum Light Promote Circadian Disruption: Simulations with a Model Oscillator Type Journal Article
Year 2018 Publication Journal of Biological Rhythms Abbreviated Journal J Biol Rhythms
Volume in press Issue Pages
Keywords Animals
Abstract (up) Artificial lab manipulation of LD cycles has enabled simulations of the disruptive conditions found in modern human societies, such as jet-lag, night-work and light at night. New techniques using animal models have been developed, and these can greatly improve our understanding of circadian disruption. Some of these techniques, such as in vivo bioluminescence assays, require minimum external light. This requirement is challenging because the usual lighting protocols applied in circadian desynchronization experiments rely on considerable light input. Here, we present a novel LD regimen that can disrupt circadian rhythms with little light per day, based on computer simulations of a model limit-cycle oscillator. The model predicts that a single light pulse per day has the potential to disturb rhythmicity when pulse times are randomly distributed within an interval. Counterintuitively, the rhythm still preserves an underlying 24-h periodicity when this interval is as large as 14 h, indicating that day/night cues are still detectable. Only when pulses are spread throughout the whole 24-h day does the rhythm lose any day-to-day period correlation. In addition, the model also reveals that stronger pulses of brighter light should exacerbate the disrupting effects. We propose the use of this LD schedule-which would be compatible with the requirements of in vivo bioluminescence assays-to help understand circadian disruption and associated illnesses.
Address Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0748-7304 ISBN Medium
Area Expedition Conference
Notes PMID:30595077 Approved no
Call Number GFZ @ kyba @ Serial 2146
Permanent link to this record
 

 
Author Lundberg, L.; Sienkiewicz, Z.; Anthony, D.C.; Broom, K.A.
Title Effects of 50 Hz magnetic fields on circadian rhythm control in mice Type Journal Article
Year 2019 Publication Bioelectromagnetics Abbreviated Journal Bioelectromagnetics
Volume 40 Issue 4 Pages 250-259
Keywords Animals; mouse models; magnetic fields
Abstract (up) Artificial light and power frequency magnetic fields are ubiquitous in the built environment. Light is a potent zeitgeber but it is unclear whether power frequency magnetic fields can influence circadian rhythm control. To study this possibility, 8-12-week-old male C57BL/6J mice were exposed for 30 min starting at zeitgeber time 14 (ZT14, 2 h into the dark period of the day) to 50 Hz magnetic fields at 580 muT using a pair of Helmholtz coils and/or a blue LED light at 700 lux or neither. Our experiments revealed an acute adrenal response to blue light, in terms of increased adrenal per1 gene expression, increased serum corticosterone levels, increased time spent sleeping, and decreased locomotor activity (in all cases, P < 0.0001) compared to an unexposed control group. There appeared to be no modulating effect of the magnetic fields on the response to light, and there was also no effect of the magnetic fields alone (in both cases, P > 0.05) except for a decrease in locomotor activity (P < 0.03). Gene expression of the cryptochromes cry1 and cry2 in the adrenals, liver, and hippocampus was also not affected by exposures (in all cases, P > 0.05). In conclusion, these results suggest that 50 Hz magnetic fields do not significantly affect the acute light response to a degree that can be detected in the adrenal response.
Address Public Health England, Chilton, United Kingdom;
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0197-8462 ISBN Medium
Area Expedition Conference
Notes PMID:30945762 Approved no
Call Number GFZ @ kyba @ Serial 2289
Permanent link to this record