toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Thompson, E.K.; Cullinan, N.L.; Jones, T.M.; Hopkins, G.R. url  doi
openurl 
  Title Effects of artificial light at night and male calling on movement patterns and mate location in field crickets Type Journal Article
  Year 2019 Publication Animal Behaviour Abbreviated Journal Animal Behaviour  
  Volume 158 Issue Pages 183-191  
  Keywords Animals  
  Abstract (up) Anthropogenic factors, such as artificial light at night (ALAN), are increasingly linked to significant modifications in animal behaviours, such as foraging or migration. However, few studies have investigated directly whether the presence of ALAN affects the ability to find a mate (mate location). One direct effect of the presence of ALAN is that it can create a light barrier in an otherwise dark environment. This may have significant behavioural implications for nocturnally active species if it affects their ability to respond to potential mates. Our study, using the acoustically orienting Australian black field cricket, Teleogryllus commodus, determined experimentally whether the presence of a fragmented light environment influenced movement patterns of virgin females and males. Moreover, given the importance of male song for reproductive outcomes in this species, we assessed simultaneously whether such behaviours were modified by the presence of a male attraction call. We found that while initiation of movement was slower in the presence of ALAN, the behavioural shifts associated with its presence were relatively small compared to the influence of a broadcast male attraction call. The response to the male attraction call was typically stronger for females than for males, but both males and females modified aspects of behaviour when it was present regardless of whether their immediate environment was fragmented by artificial light at night or not. Artificial light at night may alter subtle aspects of movement and mating behaviour in this species, but ultimately does not provide a barrier to movement or mate location.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-3472 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2752  
Permanent link to this record
 

 
Author Chen, Shanshan; Hu, Deyong url  doi
openurl 
  Title Parameterizing Anthropogenic Heat Flux with an Energy-Consumption Inventory and Multi-Source Remote Sensing Data Type Journal Article
  Year 2017 Publication Remote Sensing Abbreviated Journal Remote Sensing  
  Volume 9 Issue 11 Pages 1165  
  Keywords Remote Sensing  
  Abstract (up) Anthropogenic heat (AH) generated by human activities is an important factor affecting the urban climate. Thus, refined AH parameterization of a large area can provide data support for regional meteorological research. In this study, we developed a refined anthropogenic heat flux (RAHF) parameterization scheme to estimate the gridded anthropogenic heat flux (AHF). Firstly, the annual total AH emissions and annual mean AHF of Beijing municipality in the year 2015 were estimated using a top-down, energy-consumption inventory method, which was derived based on socioeconomic statistics and energy consumption data. The heat released from industry, transportation, buildings (including both commercial and residential buildings), and human metabolism were taken into account. Then, the county-scale AHF estimation model was constructed based on multi-source remote sensing data, such as Suomi national polar-orbiting partnership (Suomi-NPP) visible infrared imaging radiometer suite (VIIRS) nighttime light (NTL) data and moderate resolution imaging spectroradiometer (MODIS) data. This model was applied to estimate the annual mean AHF of the counties in the Beijing–Tianjin–Hebei region. Finally, the gridded AHF data with 500-m resolution was obtained using a RAHF parameterization scheme. The results indicate that the annual total AH emissions of Beijing municipality in the year 2015 was approximately 1.704 × 1018 J. Of this, the buildings contribute about 34.5%, followed by transportation and industry with about 30.5% and 30.1%, respectively, and human metabolism with only about 4.9%. The annual mean AHF value of the Beijing–Tianjin–Hebei region is about 6.07 W·m−2, and the AHF in urban areas is about in the range of 20 W·m−2 and 130 W·m−2. The maximum AHF value is approximately 130.84 W·m−2, mostly in airports, railway stations, central business districts, and other densely-populated areas. The error analysis of the county-scale AHF results showed that the residual between the model estimation and energy consumption statistics is less than 1%. In addition, the spatial distribution of RAHF results is generally centered on urban area and gradually decreases towards suburbs. The spatial pattern of the RAHF results within urban areas corresponds well to the distribution of population density, building density, and the industrial district. The spatial heterogeneity of AHF within urban areas is well-reflected through the RAHF results. The RAHF results can be used in meteorological and environmental modeling for the Beijing–Tianjin–Hebei region. The results of this study also highlight the superiority of Suomi-NPP VIIRS NTL data for AHF estimation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-4292 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2342  
Permanent link to this record
 

 
Author Adams, C.A.; Blumenthal, A.; Fernández-Juricic, E.; Bayne, E.; St. Clair, C.C. url  doi
openurl 
  Title Effect of anthropogenic light on bird movement, habitat selection, and distribution: a systematic map protocol Type Journal Article
  Year 2019 Publication Environmental Evidence Abbreviated Journal Environ Evid  
  Volume 8 Issue S1 Pages 13  
  Keywords Animals; BirdsDepartment of Biological Science, University of Alberta, CW 405, Biological Sciences Building, Edmonton, AB, T6G 2E9, Canada  
  Abstract (up) Anthropogenic light is known or suspected to exert profound effects on many taxa, including birds. Documentation of bird aggregation around artificial light at night, as well as observations of bird reactions to strobe lights and lasers, suggests that light may both attract and repel birds, although this assumption has yet to be tested. These effects may cause immediate changes to bird movement, habitat selection and settlement, and ultimately alter bird distribution at large spatial scales. Global increases in the extent of anthropogenic light contribute to interest by wildlife managers and the public in managing light to reduce harm to birds, but there are no evidence syntheses of the multiple ways light affects birds to guide this effort. Existing reviews usually emphasize either bird aggregation or deterrence and do so for a specific context, such as aggregation at communication towers and deterrence from airports. We outline a protocol for a systematic map that collects and organizes evidence from the many contexts in which anthropogenic light is reported to affect bird movement, habitat selection, or distribution. Our map will provide an objective synthesis of the evidence that identifies subtopics that may support systematic review and knowledge gaps that could direct future research questions. These products will substantially advance an understanding of both patterns and processes associated with the responses of birds to anthropogenic light.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2047-2382 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2547  
Permanent link to this record
 

 
Author Duriscoe, D.M. url  openurl
  Title Measuring Anthropogenic Sky Glow Using a Natural Sky Brightness Model. Type Journal Article
  Year 2013 Publication Publications of the Astronomical Society of the Pacific Abbreviated Journal  
  Volume 125 Issue 933 Pages 1370-1382  
  Keywords Skyglow  
  Abstract (up) Anthropogenic sky glow (a result of light pollution) combines with the natural background brightness of the night sky when viewed by an observer on the earth’s surface. In order to measure the anthropogenic component accurately, the natural component must be identified and subtracted. A model of the moonless natural sky brightness in the V-band was constructed from existing data on the Zodiacal Light, an airglow model based on the van Rhijn function, and a model of integrated starlight (including diffuse galactic light) constructed from images made with the same equipment used for sky brightness observations. The model also incorporates effective extinction by the atmosphere and is improved at high zenith angles (>80°) by the addition of atmospheric diffuse light. The model may be projected onto local horizon coordinates for a given observation at a resolution of 0.05° over the hemisphere of the sky, allowing it to be accurately registered with data images obtained from any site. Zodiacal Light and integrated starlight models compare favorably with observations from remote dark sky sites, matching within ± 8 nL over 95% of the sky. The natural airglow may be only approximately modeled, errors of up to ± 25 nL are seen when the airglow is rapidly changing or has considerable character (banding); ± 8 nL precision may be expected under favorable conditions. When subtracted from all-sky brightness data images, the model significantly improves estimates of sky glow from anthropogenic sources, especially at sites that experience slight to moderate light pollution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 539  
Permanent link to this record
 

 
Author Barentine, J.C.; Kundracik, F.; Kocifaj, M.; Sanders, J.C.; Esquerdo, G.A.; Dalton, A.M.; Foott, B.; Grauer, A.; Tucker, S.; Kyba, C.C.M. url  doi
openurl 
  Title Recovering the city street lighting fraction from skyglow measurements in a large-scale municipal dimming experiment Type Journal Article
  Year 2020 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 253 Issue Pages 107120  
  Keywords Skyglow; Remote Sensing  
  Abstract (up) Anthropogenic skyglow dominates views of the natural night sky in most urban settings, and the associated emission of artificial light at night (ALAN) into the environment of cities involves a number of known and suspected negative externalities. One approach to lowering consumption of ALAN in cities is dimming or extinguishing publicly owned outdoor lighting during overnight hours; however, there are few reports in the literature about the efficacy of these programs. Here we report the results of one of the largest municipal lighting dimming experiments to date, involving ~ 20,000 roadway luminaires owned and operated by the City of Tucson, Arizona, U.S. We analyzed both single-channel and spatially resolved ground-based measurements of broadband night sky radiance obtained during the tests, determining that the zenith sky brightness during the tests decreased by ()% near the city center and ()% at an adjacent suburban location on nights when the output of the street lighting system was dimmed from 90% of its full power draw to 30% after local midnight. Modeling these changes with a radiative transfer code yields results suggesting that street lights account for about (14 ± 1)% of light emissions resulting in skyglow seen over the city. A separate derivation from first principles implies that street lighting contributes only % of light seen at the zenith over Tucson. We discuss this inconsistency and suggest routes for future work.  
  Address 3223 N 1st Ave, Tucson, AZ 85719; john(at)darksky.org  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Enlish Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2989  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: