toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Yang, M.; Wang, S.; Zhou, Y.; Wang, L. url  openurl
  Title Review on Applications of DMSP/OLS Night-time Emissions Data Type Journal Article
  Year 2011 Publication Remote Sensing Technology and Application Abbreviated Journal  
  Volume 26 Issue 1 Pages 45-51  
  Keywords Remote Sensing  
  Abstract The Defense Meteorological Satellite System(DMSP) Operational Linescan System (OLS) has a unique low\|light imaging capability developed for the detection of clouds lit by mooolight.In addition to moonlit clouds,the OLS sensor also detects nocturnal lights from the earth surface.Hence,DMSP/OLS night\|time emissions data becomes well known as a means of monitoring human activities.In this paper,we reviewed a number of applications that had been developed or proposed based on the DMSP/OLS night\|time emissions data,such as monitoring city lights,light pollution,fires,fishing boats and gas flare,and estimating socioeconomic data.Finally,the advantages and disadvantages of night light data were listed and more applications are expected in the future based on the available light emission data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kagoburian @ Serial 899  
Permanent link to this record
 

 
Author (down) Yang, M.; Chen, Q.; Zhu, Y.; Zhou, Q.; Geng, Y.; Lu, C.; Wang, G.; Yang, C.-M. url  doi
openurl 
  Title The effects of intermittent light during the evening on sleepiness, sleep electroencephalographic spectral power and performance the next morning Type Journal Article
  Year 2019 Publication Lighting Research & Technology Abbreviated Journal Lighting Research & Technology  
  Volume in press Issue Pages  
  Keywords Human Health  
  Abstract Most studies on the effects of light exposure have been conducted with continuous light. The present study investigated the effects of intermittent light exposure on sleepiness, mood, electroencephalographic activity during sleep and performance the next morning. Fifteen volunteers were scheduled to come to the sleep laboratory to experience different lighting conditions: intermittent bright light, continuous bright light and continuous dim light. Subjective sleepiness and mood were assessed during light exposure, with electroencephalographic recording during sleep. After waking the next morning, participants filled out questionnaires and went through two cognitive tasks. The results revealed significantly lower ratings of sleepiness after intermittent light exposure, which is not different from the ratings in the continuous bright light condition, and an increase in vitality during later part of the evening and more beta activity during the first 90 minutes of sleep in the intermittent light condition, in comparison with the continuous dim light condition. However, both intermittent and continuous bright light exposure showed no difference from the continuous dim light condition in subjects' mood and cognitive functioning the next morning. The data indicated intermittent light during evening decreased sleepiness, had only minimal impact on mood in the evening, increased beta electroencephalographic activity during sleep, but had no significant influence on cognitive functioning the next morning.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-1535 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2267  
Permanent link to this record
 

 
Author (down) Xue, X.; Lin, Y.; Zheng, Q.; Wang, K.; Zhang, J.; Deng, J.; Abubakar, G.A.; Gan, M. url  doi
openurl 
  Title Mapping the fine-scale spatial pattern of artificial light pollution at night in urban environments from the perspective of bird habitats Type Journal Article
  Year 2019 Publication The Science of the Total Environment Abbreviated Journal Sci Total Environ  
  Volume 702 Issue Pages 134725  
  Keywords Remote Sensing; Animals; ALAN pollution; Circuitscape; Land cover; Nighttime light image; Urban ecology  
  Abstract The increase in artificial light at night (ALAN) is a global concern, while the pattern of ALAN pollution inside urban areas has not yet been fully explored. To fill this gap, we developed a novel method to map fine-scale ALAN pollution patterns in urban bird habitats using high spatial resolution ALAN satellite data. First, an ALAN pollution map was derived from JL1-3B satellite images. Then, the core habitat nodes (CHNs) representing the main habitats for urban birds to inhabit were identified from the land cover map, which was produced using Gaofen2 (GF2) data, and the high probability corridors (HPCs), indicating high connectivity paths, were derived from Circuitscape software. Finally, the ALAN patterns in the CHNs and HPCs were analysed, and the mismatch index was proposed to evaluate the trade-off between human activity ALAN demands and ALAN supply for the protection of urban birds. The results demonstrated that 115 woodland patches covering 4149.0ha were selected as CHNs, and most of the CHNs were large urban parks or scenic spots located in the urban fringe. The 2923 modelled HPCs occupying 1179.2ha were small remaining vegetation patches and vegetated corridors along the major transport arteries. The differences in the ALAN pollution patterns between CHNs and HPCs were mainly determined by the characteristics of the green space patches and the light source types. The polluted regions in the CHNs were clustered in a few regions that suffered from concentrated and intensive ALAN, while most of the CHNs remained unaffected. In contrast, the 727 HPCs were mainly polluted by street lighting was scattered and widely distributed, resulting a more varying influence to birds than that in the CHNs. Relating patterns of the ALAN to bird habitats and connectivity provides meaningful information for comprehensive planning to alleviate the disruptive effects of ALAN pollution.  
  Address College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China. Electronic address: ganmuye@zju.edu.cn  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31734607 Approved no  
  Call Number GFZ @ kyba @ Serial 2765  
Permanent link to this record
 

 
Author (down) Xu, P.; Wang, Q.; Jin, J.; Jin, P. url  doi
openurl 
  Title An increase in nighttime light detected for protected areas in mainland China based on VIIRS DNB data Type Journal Article
  Year 2019 Publication Ecological Indicators Abbreviated Journal Ecological Indicators  
  Volume 107 Issue Pages 105615  
  Keywords Remote Sensing  
  Abstract Protected areas, a globally accepted conservation strategy, play a fundamental role in biodiversity and species conservation. There are increasing concerns about the ecological influence of nighttime light within protected areas due to the emergence of more light-related ecological issues. Previous approaches for detecting nighttime light mainly used the traditional data source released by the Defense Meteorological Satellite Program Operational Linescan System (DMSP/OLS), but its coarse spatial resolution and limited radiometric resolution dramatically hamper prompt detection. In this study, we used data from a new source, the Visible Infrared Imaging Radiometer Suite Day-Night Band (VIIRS DNB) to detect nighttime light disturbance within protected areas of mainland China. Protected areas extracted from Landsat 8 Operational Land Imager and the Thermal Infrared Sensor (OLI-TIRS) images served as ground truths to assess detection accuracy. We found that the VIIRS DNB data provided more and better details compared with the traditional DMSP/OLS data. Pixel-based trend analysis clearly indicated that within the protected areas lighted pixels existed extensively and increased significantly from 2012 to 2017. This study provides a new solution to better understand human activities within protected areas.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1470160X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2612  
Permanent link to this record
 

 
Author (down) Xu, C.; Wang, H.-J.; Yu, Q.; Wang, H.-Z.; Liang, X.-M.; Liu, M.; Jeppesen, E. url  doi
openurl 
  Title Effects of Artificial LED Light on the Growth of Three Submerged Macrophyte Species during the Low-Growth Winter Season: Implications for Macrophyte Restoration in Small Eutrophic Lakes Type Journal Article
  Year 2019 Publication Water Abbreviated Journal Water  
  Volume 11 Issue 7 Pages 1512  
  Keywords Plants  
  Abstract Eutrophication of lakes is becoming a global environmental problem, leading to, among other things, rapid reproduction of phytoplankton, increased turbidity, loss of submerged macrophytes, and the recovery of these plants following nutrient loading reduction is often delayed. Artificial light supplement could potentially be a useful method to help speeding up recovery. In this study, three common species of submerged macrophytes, Vallisneria natans, Myriophyllum spicatum and Ceratophyllum demersum, were exposed to three LED light treatments (blue, red and white) and shaded (control) for 100 days (from 10 November 2016 to 18 January 2017) in 12 tanks holding 800 L of water. All the three LED light treatments promoted growth of the three macrophyte species in terms of shoot number, length and dry mass. The three light treatments differed in their effects on the growth of the plants; generally, the red light had the strongest promoting effects, followed by blue and white. The differences in light effects may be caused by the different photosynthetic photon flux density (PPFD) of the lights, as indicated by an observed relationship of PPFD with the growth variables. The three species also responded differently to the light treatments, V. natans and C. demersum showing higher growth than M. spicatum. Our findings demonstrate that artificial light supplement in the low-growth winter season can promote growth and recovery of submerged macrophytes and hence potentially enhance their competitiveness against phytoplankton in the following spring. More studies, however, are needed to elucidate if LED light treatment is a potential restoration method in small lakes, when the growth of submerged macrophytes are delayed following a sufficiently large external nutrient loading reduction for a shift to a clear macrophyte state to have a potential to occur. Our results may also be of relevance when elucidating the role of artificial light from cities on the ecosystem functioning of lakes in urban areas.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4441 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2606  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: