|   | 
Details
   web
Records
Author (up) Bará, S.; Nievas, M.; Sanchez de Miguel, A.; Zamorano, J.
Title Zernike analysis of all-sky night brightness maps Type Journal Article
Year 2014 Publication Applied Optics Abbreviated Journal Appl Opt
Volume 53 Issue 12 Pages 2677-2686
Keywords modeling; light at night; light pollution; all-sky; Zernike polynomials; image decomposition; sky brightness
Abstract All-sky night brightness maps (calibrated images of the night sky with hemispherical field-of-view (FOV) taken at standard photometric bands) provide useful data to assess the light pollution levels at any ground site. We show that these maps can be efficiently described and analyzed using Zernike circle polynomials. The relevant image information can be compressed into a low-dimensional coefficients vector, giving an analytical expression for the sky brightness and alleviating the effects of noise. Moreover, the Zernike expansions allow us to quantify in a straightforward way the average and zenithal sky brightness and its variation across the FOV, providing a convenient framework to study the time course of these magnitudes. We apply this framework to analyze the results of a one-year campaign of night sky brightness measurements made at the UCM observatory in Madrid.
Address Área de Óptica, Dept. de Física Aplicada, Fac. de Física, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
Corporate Author Thesis
Publisher Optical Society of America Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6935 ISBN Medium
Area Expedition Conference
Notes PMID:24787595 Approved no
Call Number IDA @ john @ Serial 318
Permanent link to this record
 

 
Author (up) Bará, S.; Ribas, S.; Kocifaj, M.
Title Modal evaluation of the anthropogenic night sky brightness at arbitrary distances from a light source Type Journal Article
Year 2015 Publication Journal of Optics Abbreviated Journal J. of Optics
Volume 17 Issue Pages 105607
Keywords Skyglow; light propagation, atmospheric optics, light pollution
Abstract The artificial emissions of light contribute to a high extent to the observed brightness of the night sky in many places of the world. Determining the all-sky radiance of anthropogenic origin requires solving the radiative transfer equation for ground-level light sources, generally resorting to a double-scattering approximation in order to account for the observed radiance patterns with a reasonable degree of accuracy. Since the all-sky radiance distribution produced by an elementary light source depends on the distance to the observer in a way that is not immediately obvious, the contributions of sources located at different distances have to be computed on an individual basis, solving for each one the corresponding scattering integrals. In this paper we show that these calculations may be significantly alleviated by using a modal approach, whereby the hemispheric night-sky radiance is expanded in terms of a convenient basis of two-dimensional (2D) orthogonal functions. Since the modal coefficients of this expansion do vary smoothly with the distance to the observer, the all-sky brightness distributions produced by light sources located at arbitrary intermediate distances can be efficiently estimated by interpolation, provided that the coefficients at a discrete set of distances are accurately determined beforehand.
Address Area de Optica, Universidade de Santiago de Compostela Campus Sur, E-15782, Santiago de Compostela, Spain; salva.bara(at)usc.es
Corporate Author Thesis
Publisher IOP Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-8986 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1235
Permanent link to this record
 

 
Author (up) Bará, S.; Rigueiro, I.; Lima, R.C.
Title Monitoring transition: Expected night sky brightness trends in different photometric bands Type Journal Article
Year 2019 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer
Volume 239 Issue Pages 106644
Keywords Skyglow; Remote Sensing; Instrumentation
Abstract Several light pollution indicators are commonly used to monitor the effects of the transition from outdoor lighting systems based on traditional gas-discharge lamps to solid-state light sources. In this work we analyze a subset of these indicators, including the artificial zenithal night sky brightness in the visual photopic and scotopic bands, the brightness in the specific photometric band of the widely used Sky Quality Meter (SQM), and the top-of-atmosphere radiance detected by the VIIRS-DNB radiometer onboard the satellite Suomi-NPP. Using a single-scattering approximation in a layered atmosphere we quantitatively show that, depending on the transition scenarios, these indicators may show different, even opposite behaviors. This is mainly due to the combined effects of the changes in the sources' spectra and angular radiation patterns, the wavelength-dependent atmospheric propagation processes and the differences in the detector spectral sensitivity bands. It is suggested that the possible presence of this differential behavior should be taken into account when evaluating light pollution indicator datasets for assessing the outcomes of public policy decisions regarding the upgrading of outdoor lighting systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2810
Permanent link to this record
 

 
Author (up) Bará, S.; Rodríguez-Arós, Á.; Pérez, M.; Tosar, B.; Lima, R.; Sánchez de Miguel, A.; Zamorano, J.
Title Estimating the relative contribution of streetlights, vehicles, and residential lighting to the urban night sky brightness Type Journal Article
Year 2018 Publication Lighting Research & Technology Abbreviated Journal Lighting Res & Tech
Volume Issue October 2018 Pages
Keywords Remote Sensing; traffic; Roadway lighting
Abstract Under stable atmospheric conditions the brightness of the urban sky varies throughout the night following the time course of the anthropogenic emissions of light. Different types of artificial light sources (e.g. streetlights, residential, and vehicle lights) have specific time signatures, and this feature makes it possible to estimate the amount of brightness contributed by each of them. Our approach is based on transforming the time representation of the zenithal night sky brightness into a modal expansion in terms of the time signatures of the different sources of light. The modal coefficients, and hence the absolute and relative contributions of each type of source, can be estimated by means of a linear least squares fit. A practical method for determining the time signatures of different contributing sources is also described, based on wide-field time-lapse photometry of the urban nightscape. Our preliminary results suggest that, besides the dominant streetlight contribution, artificial light leaking out of the windows of residential buildings may account for a significant share of the time-varying part of the zenithal night sky brightness at the measurement locations, whilst the contribution of the vehicle lights seems to be significantly smaller.
Address Área de Óptica, Dept. Física Aplicada, Facultade de Óptica e Optometría, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Galicia, Spain. salva.bara(at)usc.es
Corporate Author Thesis
Publisher SAGE Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1477-1535 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2052
Permanent link to this record
 

 
Author (up) Bará, S.; Tapia, C.; Zamorano, J.
Title Absolute Radiometric Calibration of TESS-W and SQM Night Sky Brightness Sensors Type Journal Article
Year 2019 Publication Sensors Abbreviated Journal Sensors
Volume 19 Issue 6 Pages 1336
Keywords Instrumentation; calibration; SQM; TESS; photometer; sky brightness
Abstract We develop a general optical model and describe the absolute radiometric calibration of the readings provided by two widely-used night sky brightness sensors based on irradiance-to-frequency conversion. The calibration involves the precise determination of the overall spectral sensitivity of the devices and also the constant G relating the output frequency of the light-to-frequency converter chip to the actual band-weighted and field-of-view averaged spectral radiance incident on the detector (brightness). From these parameters, we show how to define a rigorous astronomical absolute photometric system in which the sensor measurements can be reported in units of magnitudes per square arcsecond with precise physical meaning.
Address Departmento Física Aplicada, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain; salva.bara(at)usc.es
Corporate Author Thesis
Publisher MDPI Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1424-8220 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 2263
Permanent link to this record