toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Buxton, R.T.; Seymoure, B.M.; White, J.; Angeloni, L.M.; Crooks, K.R.; Fristrup, K.; McKenna, M.F.; Wittemyer, G. url  doi
openurl 
  Title The relationship between anthropogenic light and noise in U.S. national parks Type Journal Article
  Year 2020 Publication Landscape Ecology Abbreviated Journal Landscape Ecol  
  Volume 35 Issue 6 Pages 1371-1384  
  Keywords Remote Sensing; Conservation; Skyglow  
  Abstract Context

Natural sound and light regulate fundamental biological processes and are central to visitor experience in protected areas. As such, anthropogenic light and noise have negative effects on both wildlife and humans. While prior studies have examined the distribution and levels of light or noise, joint analyses are rarely undertaken despite their potentially cumulative effects.

Objectives

We examine the relationship between different types of anthropogenic light and noise conditions and what factors drive correlation, co-occurrences, and divergence between them.

Methods

We overlaid existing geospatial models of anthropogenic light and noise with landscape predictors in national parks across the continental U.S.

Results

Overlapping dark and quiet were the most common conditions (82.5–87.1% of park area), representing important refuges for wildlife and human experience. We found low correlation between anthropogenic light and noise (Spearman’s R < 0.25), with the exception of parks with a higher density of roads. Park land within urban areas had the highest probability of co-occurring high light and noise exposure, while park areas with divergent light and noise exposure (e.g., high light and low noise) were most commonly found 5–20 km from urban areas and in parks with roads present.

Conclusions

These analyses demonstrate that light and noise exposure are not always correlated in national parks, which was unexpected because human activities tend to produce both simultaneously. As such, mitigation efforts for anthropogenic light and noise will require efforts targeting site-specific sources of noise and light. Protecting and restoring sensory environments will involve constructive partnerships capable of reconciling diverse community interests.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-2973 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number UP @ altintas1 @ Serial 3155  
Permanent link to this record
 

 
Author (up) C-Sanchez, E.; Sanchez-Medina, A.J.; Alonso-Hernandez, J.B.; Voltes-Dorta, A. url  doi
openurl 
  Title Astrotourism and Night Sky Brightness Forecast: First Probabilistic Model Approach Type Journal Article
  Year 2019 Publication Sensors (Basel, Switzerland) Abbreviated Journal Sensors (Basel)  
  Volume 19 Issue 13 Pages 2840  
  Keywords Society; Astrotourism; Skyglow; night sky brightness; artificial neural networks  
  Abstract Celestial tourism, also known as astrotourism, astronomical tourism or, less frequently, star tourism, refers to people's interest in visiting places where celestial phenomena can be clearly observed. Stars, skygazing, meteor showers or comets, among other phenomena, arouse people's interest, however, good night sky conditions are required to observe such phenomena. From an environmental point of view, several organisations have surfaced in defence of the protection of dark night skies against light pollution, while from an economic point of view; the idea also opens new possibilities for development in associated areas. The quality of dark skies for celestial tourism can be measured by night sky brightness (NSB), which is used to quantify the visual perception of the sky, including several light sources at a specific point on earth. The aim of this research is to model the nocturnal sky brightness by training and testing a probabilistic model using real NSB data. ARIMA and artificial neural network models have been applied to open NSB data provided by the Globe at Night international programme, with the results of this first model approach being promising and opening up new possibilities for astrotourism. To the best of the authors' knowledge, probabilistic models have not been applied to NSB forecasting.  
  Address Management Science and Business Economics Group, University of Edinburgh Business School, Edinburgh EH8 9JS, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1424-8220 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31247919 Approved no  
  Call Number GFZ @ kyba @ Serial 2571  
Permanent link to this record
 

 
Author (up) Cabrera-Barona, P.F.; Bayón, M.; Durán, G.; Bonilla, A.; Mejía, V. url  doi
openurl 
  Title Generating and Mapping Amazonian Urban Regions Using a Geospatial Approach Type Journal Article
  Year 2020 Publication ISPRS International Journal of Geo-Information Abbreviated Journal Ijgi  
  Volume 9 Issue 7 Pages 453  
  Keywords Remote Sensing  
  Abstract (1) background: Urban representations of the Amazon are urgently needed in order tobetter understand the complexity of urban processes in this area of the World. So far, limited workthat represents Amazonian urban regions has been carried out. (2) methods: Our study area is theEcuadorian Amazon. We performed a K-means algorithm using six urban indicators: Urban fractaldimension, number of paved streets, urban radiant intensity (luminosity), and distances to theclosest new deforested areas, to oil pollution sources, and to mining pollution sources. We alsocarried out fieldwork to qualitatively validate our geospatial and statistical analyses. (3) results:We generated six Amazonian urban regions representing different urban configurations and processesof major cities, small cities, and emerging urban zones. The Amazonian urban regions generatedrepresent the urban systems of the Ecuadorian Amazon at a general scale, and correspond to theurban realities at a local scale. (4) conclusions: An Amazonian urban region is understood as a set ofurban zones that are dispersed and share common urban characteristics such a similar distance tooil pollution sources or similar urban radiant intensity. Our regionalization model represents thecomplexity of the Amazonian urban systems, and the applied methodology could be transferred toother Amazonian countries.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2220-9964 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 3115  
Permanent link to this record
 

 
Author (up) Cabrera-Cruz, S.A.; Cohen, E.B.; Smolinsky, J.A.; Buler, J.J. url  doi
openurl 
  Title Artificial Light at Night is Related to Broad-Scale Stopover Distributions of Nocturnally Migrating Landbirds along the Yucatan Peninsula, Mexico Type Journal Article
  Year 2020 Publication Remote Sensing Abbreviated Journal Remote Sensing  
  Volume 12 Issue 3 Pages 395  
  Keywords Animals  
  Abstract The distributions of birds during migratory stopovers are influenced by a hierarchy of factors. For example, in temperate regions, migrants are concentrated near areas of bright artificial light at night (ALAN) and also the coastlines of large water bodies at broad spatial scales. However, less is known about what drives broad-scale stopover distributions in the tropics. We quantified seasonal densities of nocturnally migrating landbirds during spring and fall of 2011–2015, using two weather radars on the Yucatan peninsula, Mexico (Sabancuy and Cancun). We tested the influence of environmental predictors in explaining broad-scale bird stopover densities. We predicted higher densities in areas (1) closer to the coast in the fall and farther away in spring and (2) closer to bright ALAN and with lower ALAN intensity in both seasons. We found that birds were more concentrated near the coastline in the fall and away from it in spring around Cancun but not Sabancuy. Counter to our expectations, we detected increased bird densities with increased distance from lights in spring around Sabancuy, and in both seasons around Cancun, suggesting avoidance of bright areas during those seasons. This is the first evidence of broad-scale bird avoidance of bright areas during stopover.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-4292 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 3004  
Permanent link to this record
 

 
Author (up) Cabrera-Cruz, S.A.; Smolinsky, J.A.; McCarthy, K.P.; Buler, J.J. url  doi
openurl 
  Title Urban areas affect flight altitudes of nocturnally migrating birds Type Journal Article
  Year 2019 Publication The Journal of Animal Ecology Abbreviated Journal J Anim Ecol  
  Volume 88 Issue 12 Pages 1873-1887  
  Keywords Remote Sensing; Animals; Aeroecology; bird migration; flight altitude; light pollution; radar; urbanization  
  Abstract 1.Urban areas affect terrestrial ecological processes and local weather, but we know little about their effect on aerial ecological processes. 2.Here, we identify urban from non-urban areas based on the intensity of artificial light at night (ALAN) in the landscape, and, along with weather covariates, evaluate the effect of urbanization on flight altitudes of nocturnally migrating birds. 3.Birds are attracted to ALAN, hence we predicted that altitudes would be lower over urban than over non-urban areas. However, other factors associated with urbanization may also affect flight altitudes. For example, surface temperature and terrain roughness are higher in urban areas, increasing air turbulence, height of the boundary layer, and affecting local winds. 4.We used data from nine weather surveillance radars in the eastern US to estimate altitudes at five quantiles of the vertical distribution of birds migrating at night over urban and non-urban areas during five consecutive spring and autumn migration seasons. We fit generalized linear mixed models by season for each of the five quantiles of bird flight altitude and their differences between urban and non-urban areas. 5.After controlling for other environmental variables and contrary to our prediction, we found that birds generally fly higher over urban areas compared to rural areas in spring, and marginally higher at the mid layers of the vertical distribution in autumn. We also identified a small interaction effect between urbanization and crosswind speed, and between urbanization and surface air temperature, on flight altitudes. We also found that the difference in flight altitudes of nocturnally migrating birds between urban and non-urban areas varied among radars and seasons, but were consistently higher over urban areas throughout the years sampled. 6.Our results suggest that the effects of urbanization on wildlife extend into the aerosphere, and are complex, stressing the need of understanding the influence of anthropogenic factors on airspace habitat. This article is protected by copyright. All rights reserved.  
  Address Department of Entomology and Wildlife Ecology, University of Delaware, Delaware, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8790 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31330569 Approved no  
  Call Number GFZ @ kyba @ Serial 2604  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: