|   | 
Details
   web
Records
Author (up) Bará, S.; Espey, B.; Falchi, F.; Kyba, C.C.M.; Nievas, M., Pescatori, P., Ribas, S.J., Sánchez de Miguel, A.; Staubmann, P., Tapia Ayuga, C.; Wuchterl, G., Zamorano, J.
Title Report of the 2014 LoNNe Intercomparison Campaign Type Report
Year 2015 Publication Abbreviated Journal
Volume Issue 32989 Pages
Keywords skyglow
Abstract The 2014 LoNNe (Loss of the Night Network) intercomparison campaign is the second of four campaigns planned during EU COST Action ES1204. The goal of these campaigns is to understand systematic uncertainty inherent in observations of skyglow (light pollution). An innovation of this year’s campaign was to take measurements with many of the nstruments at two sites: an urban location and a location far from artificial lights. This report summarizes the meeting, and also provides three recommendations for obtaining and analyzing handheld SQM observations.
Address
Corporate Author Thesis
Publisher Universidad Complutense Place of Publication Madrid Editor
Language English Summary Language English Original Title
Series Editor Series Title e-prints Complutense Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1254
Permanent link to this record
 

 
Author (up) Bará, S.; Falchi, F.; Furgoni, R.; Lima, R.C.
Title Fast Fourier-transform calculation of artificial night sky brightness maps Type Journal Article
Year 2020 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer
Volume 240 Issue Pages 106658
Keywords Skyglow; Light pollution; Atmospheric optics; Photometry; Radiometry; Fourier transforms
Abstract Light pollution poses a growing threat to optical astronomy, in addition to its detrimental impacts on the natural environment, the intangible heritage of humankind related to the contemplation of the starry sky and, potentially, on human health. The computation of maps showing the spatial distribution of several light pollution related functions (e.g. the anthropogenic zenithal night sky brightness, or the average brightness of the celestial hemisphere) is a key tool for light pollution monitoring and control, providing the scientific rationale for the adoption of informed decisions on public lighting and astronomical site preservation. The calculation of such maps from satellite radiance data for wide regions of the planet with sub-kilometric spatial resolution often implies a huge amount of basic pixel operations, requiring in many cases extremely large computation times. In this paper we show that, using adequate geographical projections, a wide set of light pollution map calculations can be reframed in terms of two-dimensional convolutions that can be easily evaluated using conventional fast Fourier-transform (FFT) algorithms, with typical computation times smaller than 10^-6 s per output pixel.
Address Departamento de Física Aplicada, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain; salva.bara(at)usc.es
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 2782
Permanent link to this record
 

 
Author (up) Bará, S.; Lima, R.C.; Zamorano, J.
Title Monitoring Long-Term Trends in the Anthropogenic Night Sky Brightness Type Journal Article
Year 2019 Publication Sustainability Abbreviated Journal Sustainability
Volume 11 Issue 11 Pages 3070
Keywords Skyglow
Abstract Monitoring long-term trends in the evolution of the anthropogenic night sky brightness is a demanding task due to the high dynamic range of the artificial and natural light emissions and the high variability of the atmospheric conditions that determine the amount of light scattered in the direction of the observer. In this paper, we analyze the use of a statistical indicator, the mFWHM, to assess the night sky brightness changes over periods of time larger than one year. The mFWHM is formally defined as the average value of the recorded magnitudes contained within the full width at half-maximum region of the histogram peak corresponding to the scattering of artificial light under clear skies in the conditions of a moonless astronomical night (sun below −18°, and moon below −5°). We apply this indicator to the measurements acquired by the 14 SQM detectors of the Galician Night Sky Brightness Monitoring Network during the period 2015–2018. Overall, the available data suggest that the zenithal readings in the Sky Quality Meter (SQM) device-specific photometric band tended to increase during this period of time at an average rate of +0.09 magSQM/arcsec2 per year.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2071-1050 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2552
Permanent link to this record
 

 
Author (up) Bará, S.; Nievas, M.; Sanchez de Miguel, A.; Zamorano, J.
Title Zernike analysis of all-sky night brightness maps Type Journal Article
Year 2014 Publication Applied Optics Abbreviated Journal Appl Opt
Volume 53 Issue 12 Pages 2677-2686
Keywords modeling; light at night; light pollution; all-sky; Zernike polynomials; image decomposition; sky brightness
Abstract All-sky night brightness maps (calibrated images of the night sky with hemispherical field-of-view (FOV) taken at standard photometric bands) provide useful data to assess the light pollution levels at any ground site. We show that these maps can be efficiently described and analyzed using Zernike circle polynomials. The relevant image information can be compressed into a low-dimensional coefficients vector, giving an analytical expression for the sky brightness and alleviating the effects of noise. Moreover, the Zernike expansions allow us to quantify in a straightforward way the average and zenithal sky brightness and its variation across the FOV, providing a convenient framework to study the time course of these magnitudes. We apply this framework to analyze the results of a one-year campaign of night sky brightness measurements made at the UCM observatory in Madrid.
Address Área de Óptica, Dept. de Física Aplicada, Fac. de Física, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
Corporate Author Thesis
Publisher Optical Society of America Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6935 ISBN Medium
Area Expedition Conference
Notes PMID:24787595 Approved no
Call Number IDA @ john @ Serial 318
Permanent link to this record
 

 
Author (up) Bará, S.; Ribas, S.; Kocifaj, M.
Title Modal evaluation of the anthropogenic night sky brightness at arbitrary distances from a light source Type Journal Article
Year 2015 Publication Journal of Optics Abbreviated Journal J. of Optics
Volume 17 Issue Pages 105607
Keywords Skyglow; light propagation, atmospheric optics, light pollution
Abstract The artificial emissions of light contribute to a high extent to the observed brightness of the night sky in many places of the world. Determining the all-sky radiance of anthropogenic origin requires solving the radiative transfer equation for ground-level light sources, generally resorting to a double-scattering approximation in order to account for the observed radiance patterns with a reasonable degree of accuracy. Since the all-sky radiance distribution produced by an elementary light source depends on the distance to the observer in a way that is not immediately obvious, the contributions of sources located at different distances have to be computed on an individual basis, solving for each one the corresponding scattering integrals. In this paper we show that these calculations may be significantly alleviated by using a modal approach, whereby the hemispheric night-sky radiance is expanded in terms of a convenient basis of two-dimensional (2D) orthogonal functions. Since the modal coefficients of this expansion do vary smoothly with the distance to the observer, the all-sky brightness distributions produced by light sources located at arbitrary intermediate distances can be efficiently estimated by interpolation, provided that the coefficients at a discrete set of distances are accurately determined beforehand.
Address Area de Optica, Universidade de Santiago de Compostela Campus Sur, E-15782, Santiago de Compostela, Spain; salva.bara(at)usc.es
Corporate Author Thesis
Publisher IOP Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-8986 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1235
Permanent link to this record